Abstract

This study presents a novel design for a two-axis scanning device driven by lead-zirconate-titanate (PZT) ceramic. The proposed device consists of a scanning mirror and a Y-shaped piezoelectric actuator. The scanning mirror was fabricated using an MEMS process involving three masks. Experimental results show that the fast and slow frequencies at resonance are 25.0 kHz and 0.56 kHz, respectively. The optical scanning angles are 27.6° and 39.9°. The power consumption of the device is 13.4 mW at a driving voltage of 10 V. This study also develops a laser projection module integrated with the scanning device. The module can project a 2-D image at a resolution of 640 x 480.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).
  2. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010).
    [CrossRef] [PubMed]
  3. J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005).
    [CrossRef]
  4. J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
    [CrossRef]
  5. X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
    [CrossRef]
  6. Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
    [CrossRef]
  7. J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).
  8. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
    [CrossRef]
  9. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007).
    [CrossRef] [PubMed]
  10. J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).
  11. Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
    [CrossRef]
  12. M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A Two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” IEEE MEMS Inter. Con. 2007 (Kobe, Japan) 21–25 (2007).
  13. H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” Proc. SPIE4773, 27–37 (2002).
    [CrossRef]
  14. A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
    [CrossRef]
  15. X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
    [CrossRef]
  16. K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator,” Opt. Express19(15), 13812–13824 (2011).
    [CrossRef] [PubMed]
  17. K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
    [CrossRef]
  18. S. Moon, S. W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express18(20), 21183–21197 (2010).
    [CrossRef] [PubMed]
  19. H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
    [CrossRef]

2012 (1)

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (2)

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

2008 (3)

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

2007 (2)

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007).
[CrossRef] [PubMed]

J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).

2006 (2)

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

2005 (4)

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
[CrossRef]

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005).
[CrossRef]

2002 (1)

H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” Proc. SPIE4773, 27–37 (2002).
[CrossRef]

Akamatsu, M.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

Akedo, J.

J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).

Arrasmith, C. L.

Bancu, M. G.

Bernstein, J. J.

Bouma, B. E.

Brown, D.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

Chen, N.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

Chen, Z.

Chiou, S.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

Chu, X.

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

Davis, W. O.

H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
[CrossRef]

de Boer, J. F.

Dickensheets, D. L.

Frommhagen, K.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Gan, T.

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

Gerwig, C.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Gilchrist, K. H.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

Grego, S.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

Hah, D.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

Hsieh, T.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

Iijima, T.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

Izatt, J. A.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

Jin, Q.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Kan, C.

H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
[CrossRef]

Kang, B. P.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Kim, K. H.

Kobayashi, T.

Koh, K. H.

Lakner, H.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Lee, C.

Lee, S. W.

Lee, T. W.

Li, L.

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

Li, M.

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

Li, X. Y.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Liu, Y. B.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Liw, S.

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

Ma, L.

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

Maguluri, G. N.

Mahadevan-Jansen, A.

McNabb, R. P.

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

Mohanraj, A. A.

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

Montague, T.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

Moon, S.

Park, B. H.

Park, J. H.

J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).

Qiao, D. Y.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Rogomentich, F. J.

Rubinstein, M.

Sato, H.

J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).

Schenk, H.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Scholles, M.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Schwarzenberg, M.

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

Selvaratnam, T.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

Singh, J.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

Sprague, R.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

Sun, C.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

Tani, M.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

Toshiyoshi, H.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

Tsai, J.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005).
[CrossRef]

Urey, H.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
[CrossRef]

H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” Proc. SPIE4773, 27–37 (2002).
[CrossRef]

Wong, B. J. F.

Wu, M. C.

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005).
[CrossRef]

Xu, Y.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

Yalcinkaya, A. D.

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

Yan, B.

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Yasuda, Y.

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

Yuan, S.

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron.15(5), 1432–1438 (2009).
[CrossRef]

Integr. Ferroelectr. (1)

Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, “Piezoelectric 2D-optical micro scanners with PZT thick films,” Integr. Ferroelectr.76(1), 81–91 (2005).
[CrossRef]

J. Electroceram. (1)

X. Chu, L. Ma, S. Yuan, M. Li, and L. Li, “Two-dimensional optical scanning of a piezoelectric cantilever actuator,” J. Electroceram.21(1-4), 774–777 (2008).
[CrossRef]

J. Micro-Nanolith. MEM (1)

M. Scholles, K. Frommhagen, C. Gerwig, H. Lakner, H. Schenk, and M. Schwarzenberg, “Ultracompact laser projection systems based on two-dimensional resonant microscanning mirrors,” J. Micro-Nanolith. MEM7(2), 021001 (2008).

J. Microelectromech. Syst. (3)

J. Tsai and M. C. Wu, “Gimbal-less MEMS two-axis optical scanner array with high fill-factor,” J. Microelectromech. Syst.14(6), 1323–1328 (2005).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst.15(4), 786–794 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

K. H. Gilchrist, R. P. McNabb, J. A. Izatt, and S. Grego, “Piezoelectric scanning mirrors for endoscoptic optical coherence tomography,” J. Micromech. Microeng.19(9), 095012 (2009).
[CrossRef]

H. Urey, C. Kan, and W. O. Davis, “Vibration mode frequency formulae for micromechanical scanners,” J. Micromech. Microeng.15(9), 1713–1721 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. C. Wu, “Two-axis MEMS scanners with radial vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A: Pure Appl. Opt.10(4), 044006 (2008).
[CrossRef]

Microsyst. Technol. (1)

X. Y. Li, Q. Jin, D. Y. Qiao, B. P. Kang, B. Yan, and Y. B. Liu, “Design and fabrication of a resonant scanning micromirror suspended by V shaped beams with vertical electrostatic comb drives,” Microsyst. Technol.18(3), 295–302 (2012).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” Proc. SPIE4773, 27–37 (2002).
[CrossRef]

Sensor Actuat. A. (2)

J. H. Park, J. Akedo, and H. Sato, “High-speed metal-based optical microscanner using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,” Sensor Actuat. A.135(1), 86–91 (2007).

J. Singh, T. Gan, A. A. Mohanraj, and S. Liw, “3D free space thermally actuated micromirror device,” Sensor Actuat. A.123–124(23), 468–475 (2005).

Other (1)

M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A Two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” IEEE MEMS Inter. Con. 2007 (Kobe, Japan) 21–25 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

A sketch of the scanning device.

Fig. 2
Fig. 2

The 4-DOF fast scanning model.

Fig. 3
Fig. 3

The natural frequency and fast optical angle at various k1 for I1 = 1x10−10 kg-m2, I2 = 0.9x10−11 kg-m2, I3 = 1.5x10−12 kg-m2, I4 = 1.17x10−14 kg-m2, k2 = 0.3 N-m, k3 = 0.02 N-m, k4 = 3.01x10−4 N-m and M0 = 0.5x10−4 N-m. The damping ratios for silicon and actuator are 0.0005 and 0.01, respectively.

Fig. 4
Fig. 4

The uncoupled natural frequency at various k1. The parameters for computing in this figure are the same for Fig. 4.

Fig. 5
Fig. 5

The variations of fast optical angle for different ζ1. The optical scanning angles are computed according to f2 and f3.

Fig. 6
Fig. 6

The natural frequency and fast optical angle at various k2 for I1 = 1x10−10 kg-m2, I2 = 0.9x10−11 kg-m2, I3 = 1.5x10−12 kg-m2, I4 = 1.17x10−14 kg-m2, k1 = 4 N-m, k3 = 0.02 N-m, k4 = 3.01x10−4 N-m.and M0 = 0.5x10−4 N-m. The damping ratios for silicon and actuator are 0.0005 and 0.01, respectively.

Fig. 7
Fig. 7

The 2-DOF slow scanning model.

Fig. 8
Fig. 8

The natural frequency and slow optical angle at various k5 for I5 = 4x10−10 kg-m2, I6 = 1.8x10−11 kg-m2, k6 = 2.24x10−4 N-m and T0 = 1.5x10−6 N-m. The damping ratios for silicon and actuator are 0.0005 and 0.01, respectively.

Fig. 9
Fig. 9

The MEMS process of the scanning mirror.

Fig. 10
Fig. 10

SEM photo of the MEMS mirror.

Fig. 11
Fig. 11

The assembled scanning device.

Fig. 12
Fig. 12

The experimental setup.

Fig. 13
Fig. 13

The comparison of the analytical and experimental results. The parameters used in the analytical results are I1 = 1x10−10 kg-m2, I2 = 0.9x10−11 kg-m2, I3 = 1.5x10−12 kg-m2, I4 = 1.17x10−14 kg-m2, I5 = 4x10−10 kg-m2, I6 = 1.8x10−11 kg-m2, k1 = 4 N-m, k2 = 0.21 N-m, k3 = 0.02 N-m, k4 = 3.01x10−4 N-m, k5 = 0.015 N-m, k6 = 2.24x10−4 N-m, M0 = 0.5x10−4 N-m, and T0 = 1.5x10−6 N-m. The damping ratio of the actuator is 0.01. The peak-to-peak voltage is 10 V. The peak values of the optical angle depend on the damping ratio. For the experiment, the fast and slow resonance frequencies are 25001 Hz and 557.65 Hz, respectively. For the analysis, they are 25765 Hz and 555.34 Hz, respectively.

Fig. 14
Fig. 14

The variation of the optical angle versus applied voltage. The fast and slow signals are simultaneously applied to the device by an adder.

Fig. 15
Fig. 15

The projection module displaying an image.

Tables (2)

Tables Icon

Table 1 Values of the lumped elements for the fast scanning model. The values for reflective mirror are based on a more accurate design. Other values are obtained from order analysis based on an estimated size of the scanning device.

Tables Icon

Table 2 Values of the lumped elements for the slow scanning model. The values for the slow mirror are based on a more accurate design. Other values are obtained from the order analysis based on an estimated size of the scanning device.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

w 2 = w 20 x 2
V 2 = 1 2 0 L 2 EI ( 2 w 2 x 2 ) 2 dx
T 2 = 1 2 0 L 2 ρ A 2 ( w 2 t ) 2 dx + 1 2 m 20 ( w 2 t | x= L 2 ) 2
V 2 =2EI w 20 2 L 2
T 2 = ω 2 w 20 2 ( 1 10 ρ A 2 L 2 5 + 1 2 m 20 L 2 4 )
k 2 = 2 V 2 ( w 2 x | x= L 2 ) 2 = EI L 2
I 2 = 2 T 2 ( 2 w 2 xt | x= L 2 ) 2 = 1 20 ρ A 2 L 2 3 + 1 4 m 20 L 2 2
c j =2 ζ i I i k i
I 4 =1.17× 10 14 kg m 2
k 4 =3.01× 10 4 Nm
M 0 = E p d 31 Vb( h p + h m )
m u ¨ +c u ˙ +ku=T
u={ u 1 u 2 u 3 u 4 }
m=[ I 1 0 0 0 0 I 2 0 0 0 0 I 3 0 0 0 0 I 4 ]
c=[ c 1 + c 2 + c 3 /2 c 2 c 3 /2 0 c 2 c 2 + c 3 /2 c 3 /2 0 c 3 /2 c 3 /2 c 3 + c 4 c 4 0 0 c 4 c 4 ]
k=[ k 1 + k 2 + k 3 /2 k 2 k 3 /2 0 k 2 k 2 + k 3 /2 k 3 /2 0 k 3 /2 k 3 /2 k 3 + k 4 k 4 0 0 k 4 k 4 ]
T={ M 0 0 0 }
θ f =4 u 4
ω i = 1 λ i
M(ω)= M 0 e jωt
x(ω)= [ Z(ω) ] 1 T(ω)
Z(ω)= ω 2 m+jωc+k
x= x ¯ ( 1 r 2 ) 2 + ( 2ζr ) 2

Metrics