Abstract

The use of distributed strain and temperature in optical fiber sensors based on Brillouin scattering for the monitoring of nuclear waste repository requires investigation of their performance changes under irradiation. For this purpose, we irradiated various fiber types at high gamma doses which represented the harsh environment constraints associated with the considered application. Radiation leads to two phenomena impacting the Brillouin scattering: 1) decreasing in the fiber linear transmission through the radiation-induced attenuation (RIA) phenomenon which impacts distance range and 2) modifying the Brillouin scattering properties, both intrinsic frequency position of Brillouin loss and its dependence on strain and temperature. We then examined the dose dependence of these radiation-induced changes in the 1 to 10 MGy dose range, showing that the responses strongly depend on the fiber composition. We characterized the radiation effects on strain and temperature coefficients, dependencies of the Brillouin frequency, providing evidence for a strong robustness of these intrinsic properties against radiations. From our results, Fluorine-doped fibers appear to be very promising candidates for temperature and strain sensing through Brillouin-based sensors in high gamma-ray dose radiative environments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Berghmans, “Radiation hardness of fiber optic sensors for monitoring and remote handling applications in nuclear environments,” in Proceedings Paper of Process Monitoring with Optical Fibers and Harsh Environment Sensors Michael A. Marcus, Anbo Wang, ed. (Boston, MA, USA, 1999).
  2. L. Zou, X. Bao, F. Ravet, and L. Chen, “Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure,” Appl. Opt.45(14), 3372–3377 (2006).
    [CrossRef] [PubMed]
  3. X. Zeng, X. Bao, C. Y. Chhoa, T. W. Bremner, A. W. Brown, M. D. DeMerchant, G. Ferrier, A. L. Kalamkarov, and A. V. Georgiades, “Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars,” Appl. Opt.41(24), 5105–5114 (2002).
    [CrossRef] [PubMed]
  4. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  5. S. Afshar, X. Bao, L. Zou, and L. Chen, “Brillouin spectral deconvolution method for centimeter spatial resolution and high-accuracy strain measurement in Brillouin sensors,” Opt. Lett.30(7), 705–707 (2005).
    [CrossRef] [PubMed]
  6. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett.22(11), 787–789 (1997).
    [CrossRef] [PubMed]
  7. S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
    [CrossRef]
  8. E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
    [CrossRef]
  9. D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
    [CrossRef]
  10. X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
    [CrossRef]
  11. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
    [CrossRef]
  12. A. Fernandez-Fernandez, H. Ooms, B. Brichard, M. Coeck, S. Coenen, F. Berghmans, and M. Décreton, “SCK-CEN gamma irradiation facilities for radiation tolerance assessment,” 2002 NSREC Data Workshop, 02HT8631, 171–176, (2002).
  13. L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett.30(4), 370–372 (2005).
    [CrossRef] [PubMed]
  14. M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire,” PhD Thesis, Université de Paris 11, Orsay, France, (2001).

2011 (1)

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

2006 (2)

L. Zou, X. Bao, F. Ravet, and L. Chen, “Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure,” Appl. Opt.45(14), 3372–3377 (2006).
[CrossRef] [PubMed]

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

2005 (2)

2004 (2)

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
[CrossRef]

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

2002 (1)

1997 (1)

1993 (1)

1984 (1)

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Abrardi, L.

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Afshar, S.

Alasia, D.

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Askins, C.

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Azais, B.

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Bao, X.

Bertrand, J.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

Boukenter, A.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Bremner, T. W.

Brichard, B.

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Brown, A. W.

Charre, P.

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Chen, L.

Chhoa, C. Y.

Chujo, W.

Delepine-Lesoille, S.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

DeMerchant, M. D.

Farhadiroushan, M.

Fernandez, A. F.

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Ferrier, G.

Friebele, E.

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Georgiades, A. V.

Gingerich, M.

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Girard, S.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Handerek, V. A.

Jackson, D. A.

Kalamkarov, A. L.

Keurinck, J.

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Koyamada, Y.

Long, K.

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Meunier, J.

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Nakamura, S.

Ouerdane, Y.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Parker, T. R.

Pheron, X.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

Ravet, F.

Rogers, A. J.

Sato, S.

Sikali Mamdem, Y.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

Sotobayashi, H.

Thévenaz, L.

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Tortech, B.

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

Vie, M.

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Wan, Y.

Webb, D. J.

Zeng, X.

Zou, L.

Appl. Opt. (2)

Electron. Lett. (1)

X. Pheron, Y. Ouerdane, S. Girard, B. Tortech, S. Delepine-Lesoille, J. Bertrand, Y. Sikali Mamdem, and A. Boukenter, “UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres,” Electron. Lett.47(2), 132–133 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

D. Alasia, A. F. Fernandez, L. Abrardi, B. Brichard, and L. Thévenaz, “The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres,” Meas. Sci. Technol.17(5), 1091–1094 (2006).
[CrossRef]

Nucl Instrum Meth B (1)

E. Friebele, C. Askins, M. Gingerich, and K. Long, “Optical fiber waveguides in radiation environments, II,” Nucl Instrum Meth B1(2-3), 355–369 (1984).
[CrossRef]

Nucl. Instrum. Meth. B (1)

S. Girard, J. Keurinck, A. Boukenter, J. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen, germanium-doped and pure silica core optical fibers,” Nucl. Instrum. Meth. B215(1-2), 187–195 (2004).
[CrossRef]

Opt. Lett. (4)

Other (3)

M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire,” PhD Thesis, Université de Paris 11, Orsay, France, (2001).

A. Fernandez-Fernandez, H. Ooms, B. Brichard, M. Coeck, S. Coenen, F. Berghmans, and M. Décreton, “SCK-CEN gamma irradiation facilities for radiation tolerance assessment,” 2002 NSREC Data Workshop, 02HT8631, 171–176, (2002).

F. Berghmans, “Radiation hardness of fiber optic sensors for monitoring and remote handling applications in nuclear environments,” in Proceedings Paper of Process Monitoring with Optical Fibers and Harsh Environment Sensors Michael A. Marcus, Anbo Wang, ed. (Boston, MA, USA, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

On the left, Optical losses at 1550 nm induced by gamma doses in optical fiber samples. On the right, Brillouin loss spectrum measured as a function of the total gamma doses in a SMF28 optical fiber.

Fig. 2
Fig. 2

Measured dependence of the BFS with dose for the (a) SMF28 fiber (b) the HGe-doped fiber and (c) the F-doped fiber

Fig. 3
Fig. 3

(a) Measured BFS dependence on temperature for the SM28 fiber irradiated at a 10MGy dose (b) Compilation of temperature coefficients CT extracted for a large set of BFS dose dependence measurements for various fiber types and irradiation doses.

Fig. 4
Fig. 4

(a) Measured BFS dependence on strain for the F-doped irradiated at 10MGy. (b) Compilation of strain coefficient Cε extracted for a large set of BFS dose dependence measurements for various fiber types and irradiation doses.

Fig. 5
Fig. 5

Optical losses induced at 1310 nm by high gamma ray doses in optical fiber samples.

Tables (1)

Tables Icon

Table 1 Summary of detected BFS

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν B ν B0 (ε=0,ΔT=0) = C ε *ε+ C T *ΔT

Metrics