Abstract

This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a super-channel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 µs. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  2. Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. J. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express20(2), 1798–1804 (2012).
    [CrossRef] [PubMed]
  3. A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Defragmentation of transparent flexible optical WDM (FWDM) networks,ˮ (Optical Society of America, 2011), p. OTuI8.
  4. T. Takagi, H. Hasegawa, K.-i. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,ˮ (Optical Society of America, 2011), p. Mo.2.K.3.
  5. F. Cugini, M. Secondini, N. Sambo, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi, “Push-pull technique for defragmentation in flexible optical networks,ˮ in Optical Fiber Conference (2012), p. JTh2A.40.
  6. K. Sone, X. Wang, S. Oda, G. Nakagawa, Y. Aoki, I. Kim, P. Palacharla, T. Hoshida, M. Sekiya, and J. C. Rasmussen, “First demonstration of hitless spectrum defragmentation using real-time coherent receivers in flexible grid optical networks,ˮ in European Conference on Optical Communication (2012), p. Th.3.D.1.
  7. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,ˮ,” J. Lightwave Technol.29(1), 53–61 (2011).
    [CrossRef]
  8. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: A tutorial,ˮ,” J. Lightwave Technol.22(1), 193–202 (2004).
    [CrossRef]
  9. R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
    [CrossRef]
  10. B. C. Thomsen, R. Maher, D. S. Millar, and S. J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK with parallel DSP,” Opt. Express19(26), B770–B776 (2011).
    [CrossRef] [PubMed]
  11. S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

2012

R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
[CrossRef]

Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. J. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express20(2), 1798–1804 (2012).
[CrossRef] [PubMed]

2011

2009

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

2004

2002

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Akulova, Y.

Barton, J. S.

Bosco, G.

Cao, J.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Carena, A.

Coldren, C. W.

Coldren, L. A.

Curri, V.

Fish, G. A.

Forghieri, F.

Geisler, D. J.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Johansson, L.

Kamei, S.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Lee, H. J.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Liu, R.

Maher, R.

R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
[CrossRef]

B. C. Thomsen, R. Maher, D. S. Millar, and S. J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK with parallel DSP,” Opt. Express19(26), B770–B776 (2011).
[CrossRef] [PubMed]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Millar, D.

R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
[CrossRef]

Millar, D. S.

Okamoto, K.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Pan, Z.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Poggiolini, P.

Savory, S.

R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
[CrossRef]

Savory, S. J.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Thomsen, B.

R. Maher, D. Millar, S. Savory, and B. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.99, 1 (2012).
[CrossRef]

Thomsen, B. C.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Wen, K.

Yin, Y.

Yoo, S. J.

Yoo, S. J. B.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Zhang, Y.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

IEEE Commun. Mag.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,ˮ,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Photonics Technol. Letters

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,ˮ Photonics Technol. Letters14, 1211–1213 (2002).

Other

A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Defragmentation of transparent flexible optical WDM (FWDM) networks,ˮ (Optical Society of America, 2011), p. OTuI8.

T. Takagi, H. Hasegawa, K.-i. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,ˮ (Optical Society of America, 2011), p. Mo.2.K.3.

F. Cugini, M. Secondini, N. Sambo, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi, “Push-pull technique for defragmentation in flexible optical networks,ˮ in Optical Fiber Conference (2012), p. JTh2A.40.

K. Sone, X. Wang, S. Oda, G. Nakagawa, Y. Aoki, I. Kim, P. Palacharla, T. Hoshida, M. Sekiya, and J. C. Rasmussen, “First demonstration of hitless spectrum defragmentation using real-time coherent receivers in flexible grid optical networks,ˮ in European Conference on Optical Communication (2012), p. Th.3.D.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectrum diagram (a) before defragmentation, (b) after sweeping defragmentation, and (c) after complete defragmentation using the proposed method.

Fig. 2
Fig. 2

Comparison of wavelength sweeping technique and proposed technique in terms of (a) blocking probability vs. offered load, and (b) average network defragmentation time per signal departure vs. offered load.

Fig. 3
Fig. 3

(a) 3-node network scenario: EOTN - elastic optical transponder; WSS: wavelength selective switch; NC&M: network control and management. (b) spectrum allocation before (top) and after (bottom) defragmentation. (c). Defragmentation steps with WSS reconfiguration to accept the new spectrum position for connection A.

Fig. 4
Fig. 4

Example of connection A occupying 5 frequency slots centered at lambda1 before (left) and after defragmentation. Each subcarrier composing the superchannel is generated using a fast TLD and it is received with a coherent receiver using a fast TLD as LO.

Fig. 5
Fig. 5

(a) Bank of coherent receivers with fast-tuning local oscillators (FT-LOs) with wavelength tracking based on athermal AWG and a PD Array. (b): Time/Frequency domain representation of defragmentation operation for connection A.

Fig. 6
Fig. 6

Hitless defragmentation network testbed. TLD: tunable laser diode; FPGA: field programmable gate array; WSS: wavelength selective switch; LPF: low pass filter; Comp: comparator; EDFA: erbium doped fiber amplifier. BPF: band pass filter. Inset (a) and (b): filtering profile of WSS1 input ports 1 and 2. Insets (c) and (d): spectrum allocation before and after defragmentation.

Fig. 7
Fig. 7

(a) trace showing the time when defragmentation happens. (b) Frequency offset between TX and LO lasers after they switched to lambda3 VS time; (c) BER VS time instant from which DSP processing and BER counting start.

Fig. 8
Fig. 8

The BER performance of the elastic optical network. “black dots”: BER curve obtained with 100KHz linewidth laser; “red dots”: static measurement at λ3 with 2MHz lasers (fast TLDs); “blue diamonds”: BER at λ3 during defragmentation operation.

Fig. 9
Fig. 9

(a) Real-time BER monitor of connection B at lambda2 and (b) accumulated errors on connection B under different defragmentation scenario. BER and errors are calculated over one minute. “x”: no defragmentation operation is performed; “red dots”: fast defragmentation with the proposed technique both in case of wavelength selective or colorless ROADM; “blue diamonds”: defragmentation based on wavelength sweeping.

Tables (1)

Tables Icon

Table 1 Comparison of Defragmentation Techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T HOLD = T tune_TX + T LOOP + T tune_LO + T LOCK

Metrics