Abstract

We report a comparison of different capping materials on the intermixing of modulation p-doped InAs/In(Ga)As quantum dots (QD). QD materials with different caps are shown to exhibit significant difference in their optical properties during the annealing process. The selective area intermixing technique is demonstrated to laterally integrate two and three different QD light emitting devices with a single electrical contact. A spectral bandwidth of 240nm centered at 1188nm is achieved in a device with two sections. By calculating the point spread function for the obtained emission spectra, and applying the Rayleigh criteria for resolution, an axial resolution of 3.5μm is deduced. A three section device realizes a spectral bandwidth of 310nm centered at 1145nm. This corresponds to an axial resolution of 2.4μm. Such a small predicted axial resolution is highly desirable in optical coherence tomography system and other coherence-based systems applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing,” J. Lightwave Technol.16(9), 1546–1559 (1998).
    [CrossRef]
  2. W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983).
    [CrossRef]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
    [CrossRef] [PubMed]
  4. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt.41(25), 5256–5262 (2002).
    [CrossRef] [PubMed]
  5. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
    [CrossRef]
  6. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010).
    [CrossRef]
  7. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
    [CrossRef]
  8. S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
    [CrossRef]
  9. X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
    [CrossRef]
  10. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
    [CrossRef]
  11. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
    [CrossRef]
  12. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
    [CrossRef] [PubMed]
  13. Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010).
    [CrossRef] [PubMed]
  14. J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
    [CrossRef]
  15. C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
    [CrossRef]
  16. H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
    [CrossRef]
  17. A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration,” Opt. Express17(12), 9704–9711 (2009).
    [CrossRef] [PubMed]
  18. Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser, ” Sci. Rep. 2, Article Nr. 477 (2012).
  19. X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
    [CrossRef]
  20. Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
    [CrossRef]
  21. L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
    [CrossRef]
  22. R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
    [CrossRef]
  23. A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
    [CrossRef]
  24. S. Alexey, “Properties of pure aluminum, ” in Handbook of Aluminum (CRC Press, 2003), Chap. 2.
  25. B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
    [CrossRef]
  26. S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
    [CrossRef]
  27. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
    [CrossRef] [PubMed]
  28. Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
    [CrossRef]
  29. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  30. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
    [CrossRef] [PubMed]

2012 (1)

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

2010 (3)

2009 (2)

A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration,” Opt. Express17(12), 9704–9711 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

2008 (3)

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

2007 (2)

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

2005 (1)

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

2004 (1)

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

2003 (1)

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

2002 (2)

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
[CrossRef]

C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt.41(25), 5256–5262 (2002).
[CrossRef] [PubMed]

2001 (2)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
[CrossRef]

2000 (1)

1999 (2)

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

1998 (2)

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing,” J. Lightwave Technol.16(9), 1546–1559 (1998).
[CrossRef]

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

1997 (3)

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

1993 (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

1983 (1)

W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983).
[CrossRef]

Ahopelto, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Akcay, C.

Ayling, S. G.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Barbarin, Y.

Bellancourt, A.-R.

Boppart, S. A.

Bryce, A. C.

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
[CrossRef]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Burke, P. T.

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

Burns, W.

W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983).
[CrossRef]

Chen, S. M.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Chen, Z. P.

Childs, D. T. D.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Chua, S. J.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Cohen, R. M.

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

de Boer, J. F.

Djie, H. S.

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

Fan, W. J.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Feldman, R. D.

Feldmann, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Fiore, A.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

Fu, L.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

Gal, M.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Golling, M.

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Grosse, S.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Harstead, E. E.

Helmy, A. S.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Hoffmann, M.

Hogg, R. A.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Hopkinson, M.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

Hugues, M.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Ippen, E. P.

Jagadish, C.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

Jiang, J.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Jiang, Q.

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
[CrossRef]

Jiang, S.

Jin, P.

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

Keller, U.

Launois, H.

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Lever, P.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

Li, G.

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

Li, L. H.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

Li, X. D.

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Lin, C.

W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983).
[CrossRef]

Lipsanen, H.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Liu, F. Q.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Liu, N.

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Luxmoore, I. J.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

Lv, X. Q.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010).
[CrossRef]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Maas, D. J. H. C.

Marsh, J. H.

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
[CrossRef]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

McIlvaney, K.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Moeller, R.

W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983).
[CrossRef]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Negro, D.

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

Nelson, J. S.

Nilsen, T. A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Nissim, Y.

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

Occhi, L.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

Ooi, B. S.

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Parrein, P.

Pepin, A.

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

Pitris, C.

Ramsay, A. J.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Reece, P.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

Roberts, J. S.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Rolland, J. P.

Rossetti, M.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Sandmann, J. H. H.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Sato, M.

Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
[CrossRef]

Saxer, C.

Schneider, M.

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Shafiei, M.

Sopanen, M.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Street, M. W.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

Südmeyer, T.

Sun, Z. Z.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Tan, H. H.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

Tanno, N.

Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
[CrossRef]

Tulkki, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Velez, C.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

Vieu, C.

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

von Plessen, G.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Walker, C. L.

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
[CrossRef]

Wang, C. H.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Wang, X. C.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Wang, Y.

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

Wang, Z. G.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010).
[CrossRef]

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Wood, T. H.

Xiang, S. H.

Xie, X. G.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Xu, B.

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Xu, S. J.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
[CrossRef]

Zhang, Z. H.

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

Zhang, Z. Y.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010).
[CrossRef]

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

Zhao, Y. H.

Zhou, K. J.

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Zirngibl, M.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (5)

H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007).
[CrossRef]

S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012).
[CrossRef]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003).
[CrossRef]

R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998).
[CrossRef]

Electron. Lett. (2)

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004).
[CrossRef]

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002).
[CrossRef]

J. Appl. Phys. (1)

X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. B (1)

A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997).
[CrossRef]

Nanotechnology (1)

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009).
[CrossRef] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997).
[CrossRef]

Semicond. Sci. Technol. (1)

J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993).
[CrossRef]

Other (2)

S. Alexey, “Properties of pure aluminum, ” in Handbook of Aluminum (CRC Press, 2003), Chap. 2.

Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser, ” Sci. Rep. 2, Article Nr. 477 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

PL intensity Versace wavelength of different caps used during the annealing process, the inset shows the structural plot of the wafer.

Fig. 2
Fig. 2

Power-dependent PL for (a) As grown sample, (b) sample annealed with 200nm thick TiO2 film, (c) sample annealed with 200nm thick Al film, (c) sample annealed with 200nm SiO2 film, (d) sample annealed with 500nm SiO2 film.

Fig. 3
Fig. 3

(a), (d) shows the schematic of the device and the emission spectra, (b), (e) shows the computed complex temporal coherence function in time domain, (c), (f) shows the plot when the two PSF functions satisfy the Rayleigh criterion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l cFWHM = 4ln2 π × λ 0 2 Δλ

Metrics