F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81, 063105 (2010).
[Crossref]
[PubMed]
T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]
[PubMed]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.
Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]
[PubMed]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]
[PubMed]
Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]
[PubMed]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]
[PubMed]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17, 16209–16215 (2009).
[Crossref]
[PubMed]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012).
[Crossref]
[PubMed]
I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 45, 878–880 (2009).
[Crossref]
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]
[PubMed]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]
[PubMed]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]
[PubMed]
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]
T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]
[PubMed]
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]
[PubMed]
Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]
[PubMed]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]
[PubMed]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]
[PubMed]
Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]
[PubMed]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]
[PubMed]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]
A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett. 37, 43–45 (2012).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 45, 878–880 (2009).
[Crossref]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]
A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett. 37, 43–45 (2012).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]
[PubMed]
Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]
[PubMed]
I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17, 16209–16215 (2009).
[Crossref]
[PubMed]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81, 063105 (2010).
[Crossref]
[PubMed]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.
Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81, 063105 (2010).
[Crossref]
[PubMed]
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]
[PubMed]
M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]
[PubMed]
Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]
[PubMed]
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]
A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett. 37, 43–45 (2012).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon. 5, 293–296 (2011).
[Crossref]
A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]
[PubMed]
A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4, 37–40 (2010).
[Crossref]
Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]
[PubMed]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon. 6, 480–487 (2012).
[Crossref]
C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012).
[Crossref]
[PubMed]
F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon. 5, 770–776 (2011).
[Crossref]
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]
S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science 3, 825–828 (2001).
[Crossref]
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon. 6, 369–373 (2012).
[Crossref]
F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81, 063105 (2010).
[Crossref]
[PubMed]
M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]
I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012).
[Crossref]
[PubMed]
I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 45, 878–880 (2009).
[Crossref]
Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]