Abstract

Abstract: We propose a novel structure of complex-tap microwave photonic filter (MPF) employing an incoherent broadband optical source (BOS) and a programmable optical spectrum processor. By tailoring the optical spectral amplitude and phase, arbitrary complex continuous-time impulse responses of the MPF can be constructed. Frequency responses with a single flat-top, highly chirped, or arbitrary-shape passband are demonstrated, respectively. The passband center can also be tuned in a wide range only limited by the opto-electrical devices. To the best of our knowledge, it is the first demonstration of an incoherent-BOS-based MPF which is single-bandpass, widely tunable, and highly reconfigurable with complex taps.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  2. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
    [CrossRef]
  3. M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express16(1), 295–303 (2008).
    [CrossRef] [PubMed]
  4. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
  5. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
    [CrossRef]
  6. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
    [CrossRef]
  7. Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
    [CrossRef]
  8. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express19(19), 18423–18429 (2011).
    [CrossRef] [PubMed]
  9. Finisar Corporation, “Programmable narrow-band filtering using the WaveShaper 1000E and WaveShaper 4000E,” product whitepaper.
  10. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol.24(7), 2500–2509 (2006).
    [CrossRef]
  11. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol.26(15), 2619–2628 (2008).
    [CrossRef]
  12. T. X. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express19(7), 6231–6242 (2011).
    [CrossRef] [PubMed]
  13. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “All-optical microwave bandpass filter and phase shifter using a broadband optical source and an optical phase modulator,” Opt. Lett.37(10), 1661–1663 (2012).
    [CrossRef] [PubMed]
  14. T. E. Darcie and A. Moye, “Modulation-dependent limits to intensity-noise suppression in microwave-photonic links,” IEEE Photon. Technol. Lett.17(10), 2185–2187 (2005).
    [CrossRef]

2012 (1)

2011 (3)

2010 (3)

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

2008 (2)

2006 (3)

2005 (1)

T. E. Darcie and A. Moye, “Modulation-dependent limits to intensity-noise suppression in microwave-photonic links,” IEEE Photon. Technol. Lett.17(10), 2185–2187 (2005).
[CrossRef]

Andrés, M. V.

Capmany, J.

Chang, Y. M.

Cruz, J. L.

Dai, Y.

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

Darcie, T. E.

T. E. Darcie and A. Moye, “Modulation-dependent limits to intensity-noise suppression in microwave-photonic links,” IEEE Photon. Technol. Lett.17(10), 2185–2187 (2005).
[CrossRef]

Díez, A.

García Olcina, R.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Huang, T. X.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).

Leaird, D. E.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Lee, J. H.

Loayssa, A.

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express16(1), 295–303 (2008).
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Long, C. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Minasian, R. A.

T. X. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express19(7), 6231–6242 (2011).
[CrossRef] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol.24(7), 2500–2509 (2006).
[CrossRef]

Moye, A.

T. E. Darcie and A. Moye, “Modulation-dependent limits to intensity-noise suppression in microwave-photonic links,” IEEE Photon. Technol. Lett.17(10), 2185–2187 (2005).
[CrossRef]

Ortega, B.

Pastor, D.

Sagues, M.

M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express16(1), 295–303 (2008).
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Sales, S.

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Weiner, A. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Wu, R.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

Xue, X.

Yao, J.

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

Yi, X.

T. X. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express19(7), 6231–6242 (2011).
[CrossRef] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).

Zhang, H.

Zheng, X.

Zhou, B.

IEEE Photon. Technol. Lett. (3)

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett.23(21), 1618–1620 (2011).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

T. E. Darcie and A. Moye, “Modulation-dependent limits to intensity-noise suppression in microwave-photonic links,” IEEE Photon. Technol. Lett.17(10), 2185–2187 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

Y. Dai and J. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (1)

Other (1)

Finisar Corporation, “Programmable narrow-band filtering using the WaveShaper 1000E and WaveShaper 4000E,” product whitepaper.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup of the fully reconfigurable single-bandpss MPF. BOS: incoherent broadband optical source; C: coupler; PC: polarization controller; MZM: Mach-Zehnder modulator; VDL: variable delay line; DCF: dispersion-compensating fiber; BPD: balanced photodetector.

Fig. 2
Fig. 2

Illustration of complex tap generation.

Fig. 3
Fig. 3

h b (t) , H T (Ω) , and H ˜ RF (ω) for flat-top passbands with (a-c) B e =500 MHz and (d-f) B e =1 GHz . (In (c) and (f), solid: measured, dotted: calculated. See the context for the definition of symbols.)

Fig. 4
Fig. 4

h b (t) , H T (Ω) , and H ˜ RF (ω) for chirped passbands with (a-c) B e =3 GHz , D e =5 ns/GHz and (d-f) D e =10 ns/GHz . (In (c) and (f), solid: measured, dotted: calculated. See the context for the definition of symbols.)

Fig. 5
Fig. 5

h b (t) , H T (Ω) , and H ˜ RF (ω) for arbitrary-shape passband. (In (c), solid: measured, dotted: calculated. See the context for the definition of symbols.)

Fig. 6
Fig. 6

Tunable responses of the flat-top MPF with B e =1 GHz .

Fig. 7
Fig. 7

(a), (b) RF output spectra and (c) plots of signal and noise power versus modulation index (the noise bandwidth equals the RF spectrum analyzer’s RBW which is 3 MHz).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i RFo ( ω )=8 l 1 l 2 [ π V RFi / ( 4 V π ) ]× 1 2π 0 + N( Ω ) A T ( Ω ) cos[ ΩΔτ Φ T ( Ω ) θ 2 ω 2 /2 ]exp[ j θ 2 ( Ω Ω 0 )ω ] dΩ,
H ˜ RF ( ω )= H RF ( ω ) | ω0 = R L N 0 l 1 l 2 / ( 2 θ 2 V π ) H b ( ω Δτ / θ 2 )exp[ j( Ω 0 Δτ θ 2 ω 2 /2 ) ]
H b ( ω )= θ 2 0 + H T * ( Ω )exp[ j θ 2 ( Ω Ω 0 )ω ] dΩ =[ h b ( t ) ]
h b ( t )= sin( π B e t ) / ( π B e t ) × W Hann ( t ), T/2 tT/2
h b ( t )= W tanh ( t )exp( jπ t 2 / D e ), T/2 tT/2
20log( | H b ( ω ) | )={ 30ω / ω 1 , ω 1 ω<0 0, 0ω ω 2 , others

Metrics