Abstract

This work proposes a thermally rotatable grating that is based on hybrid-aligned cholesteric liquid crystals (HBA-cholesteric LCs). Experiments reveal that the HBA-cholesteric texture has a uniformly striped domain, which forms a grating, when the ratio of the cell gap to the helical pitch (d/p) is in the range of 2≤d/p≤3. The stripe direction of the HBA-cholesteric grating is predicted by the proposed vertically aligned LC layer model. The stripe direction of the HBA-cholesteric grating rotates continuously under thermal and electrical effects. Furthermore, the HBA-cholesteric grating has a larger rotational angle under the thermal effect (~101°) than under the electrical effect (~48°). Potential applications of the proposed thermally rotatable cholesteric grating for beam steering devices are emphasized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971).
    [CrossRef]
  2. M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
    [CrossRef]
  3. M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys.81(3), 1063–1066 (1997).
    [CrossRef]
  4. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express15(2), 616–622 (2007).
    [CrossRef] [PubMed]
  5. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
    [CrossRef]
  6. R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
    [CrossRef]
  7. K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993).
    [CrossRef]
  8. K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, “Free-space optical interconnections with liquid-crystal microprism arrays,” Appl. Opt.34(14), 2571–2580 (1995).
    [CrossRef] [PubMed]
  9. J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett.22(8), 552–554 (1997).
    [CrossRef] [PubMed]
  10. D. Faklis and G. M. Morris, “Diffractive optics technology for display applications,” Proc. SPIE2407, 57–61 (1995).
    [CrossRef]
  11. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
    [CrossRef]
  12. D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
    [CrossRef]
  13. O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
    [CrossRef]
  14. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970).
    [CrossRef]
  15. A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).
  16. A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).
  17. J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
    [CrossRef]
  18. I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
    [CrossRef]
  19. H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).
  20. T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
    [CrossRef]
  21. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
  22. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
    [CrossRef]

2012 (1)

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

2010 (1)

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

2007 (1)

2004 (1)

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

2002 (2)

A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

2001 (1)

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

2000 (1)

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
[CrossRef]

1999 (1)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
[CrossRef]

1997 (5)

J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett.22(8), 552–554 (1997).
[CrossRef] [PubMed]

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys.81(3), 1063–1066 (1997).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

1996 (1)

R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
[CrossRef]

1995 (2)

1993 (1)

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993).
[CrossRef]

1992 (1)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971).
[CrossRef]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970).
[CrossRef]

Aizawa, Y.

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

Barbastathis, G.

Bos, P. J.

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
[CrossRef]

Chang, C. C.

R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
[CrossRef]

Chen, C. W.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

Chen, F. C.

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Chen, S. H.

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Chen, Y. Y.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
[CrossRef]

Chien, L.-C.

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Chuang, E.

Doane, J. W.

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Drolet, J. J. P.

Faklis, D.

D. Faklis and G. M. Morris, “Diffractive optics technology for display applications,” Proc. SPIE2407, 57–61 (1995).
[CrossRef]

Fuh, A. Y. G.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

Fujii, A.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971).
[CrossRef]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, “Free-space optical interconnections with liquid-crystal microprism arrays,” Appl. Opt.34(14), 2571–2580 (1995).
[CrossRef] [PubMed]

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993).
[CrossRef]

Honma, M.

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

Hsieh, M. F.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

Huang, C. Y.

A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

Huang, Y.

Ito, R.

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

Jau, H. C.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
[CrossRef]

Kurokawa, T.

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993).
[CrossRef]

Lavrentovich, O. D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
[CrossRef]

Liaw, C. H.

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

Lin, C. H.

A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

Lin, T. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

Liu, J. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

Lonberg, F.

R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
[CrossRef]

Lu, M. H.

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys.81(3), 1063–1066 (1997).
[CrossRef]

Matsuhisa, Y.

Meyer, R. B.

R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
[CrossRef]

Miyanishi, T.

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

Morris, G. M.

D. Faklis and G. M. Morris, “Diffractive optics technology for display applications,” Proc. SPIE2407, 57–61 (1995).
[CrossRef]

Nose, T.

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

Ozaki, M.

Psaltis, D.

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971).
[CrossRef]

Shiyanovskii, S. V.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
[CrossRef]

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

Takao, Y.

Voloschenko, D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
[CrossRef]

Wu, J. J.

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Wu, S. T.

Wu, Y. S.

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Xu, M.

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

Yamaguchi, M.

Yamamoto, T.

Yang, D. K.

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

Yang, D.-K.

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Yao, I. A.

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

Zhou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (8)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127–129 (1971).
[CrossRef]

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett.71(10), 1350–1352 (1997).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. J. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997).
[CrossRef]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett.17(12), 531–532 (1970).
[CrossRef]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y. G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett.100(13), 131909 (2012).

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett.76(24), 3516–3518 (2000).
[CrossRef]

J. Appl. Phys. (2)

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys.81(3), 1063–1066 (1997).
[CrossRef]

I. A. Yao, C. H. Liaw, S. H. Chen, and J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys.96(3), 1760–1762 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (4)

T. Nose, T. Miyanishi, Y. Aizawa, R. Ito, and M. Honma, “Rotational behavior of stripe domains appearing in hybrid aligned chiral nematic liquid crystal cells,” Jpn. J. Appl. Phys.49(5), 051701 (2010).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys.40, 1334–1338 (2001).

A. Y. G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys.41, 211–218 (2002).

J. J. Wu, F. C. Chen, Y. S. Wu, and S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys.41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Liq. Cryst. (1)

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst.14(2), 307–317 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. B. Meyer, F. Lonberg, and C. C. Chang, “Cholesteric liquid crystal smart reflectors,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)288(1), 47–61 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

D. Faklis and G. M. Morris, “Diffractive optics technology for display applications,” Proc. SPIE2407, 57–61 (1995).
[CrossRef]

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE3787, 149–155 (1999).
[CrossRef]

Other (1)

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Micrographs of HBA-cholesteric texture at different d/p ratios (a) d/p = 1.5, (b) d/p = 2.2, (c) d/p = 2.5, (d) d/p = 2.7, (e) d/p = 3.0 and (f) d/p = 4.0.

Fig. 2
Fig. 2

(a) Stripe direction of HBA-cholesteric gratings with different d/p ratios. Stripe direction ϕ is defined with respect to rubbing direction. Dashed line is fitted using the VA-LC layer model and solid line is fitted using middle-LC layer model. Since 360° represents one period, the range of stripe directions ϕ is 0°≤ϕ≤360°. (b) Director orientation of HBA-cholesteric texture. The x -axis is defined to be parallel to rubbing direction; ϕML is orientation of middle-LC layer, and ϕVA is orientation of VA-LC layer.

Fig. 3
Fig. 3

SEM images of morphology of polymer network on surfaces of (a) vertically aligned substrate and (b) homogeneously aligned substrate of HBA-cholesteric grating.

Fig. 4
Fig. 4

Micrographs of HBA-cholesteric grating with d/p = 3.0 at (a) T = 26°C, (b) 38°C, (c) 42°C and (d) 48°C.

Fig. 5
Fig. 5

Orientations of directors of VA-LC layers of HBA-cholesteric gratings with (a) long helical pitch (p1) and (b) short helical pitch (p2), where p1 > p2.

Fig. 6
Fig. 6

Change of stripe direction of HBA-cholesteric gratings with d/p ratio at different temperatures. Heating rate used in experiment is ~1°C/min.

Fig. 7
Fig. 7

Diffraction patterns of HBA-cholesteric grating with d/p = 2.2 at various temperatures. (a) 26°C, (b) 30 °C, (c) 34 °C, (d) 38 °C, (e) 42 °C and (f) 46 °C.

Fig. 8
Fig. 8

(a) Micrographs of HBA-cholesteric grating with d/p = 2.4 at different applied voltages. (b) Change of stripe direction of HBA-cholesteric gratings with d/p ratio at different applied voltages.

Metrics