Abstract

Strong polarization dependence in the optical transmission through a bull’s eye with a central elliptical aperture in a thin Au film is analyzed numerically by finite difference time domain (FDTD) method. Focusing on the impacts of the structural anisotropy, detailed investigation of polarization dependent enhanced optical transmission (EOT) of light is discussed in terms of the resonance intensity variations caused by the incident light polarization and the geometrical parameters of bull’s eye. We found that the light polarized along the minor axis of the elliptic aperture has significantly larger EOT by more than three orders of magnitude than the other orthogonal polarization, which can be further utilized in polarized EOT devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  5. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
    [CrossRef]
  6. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
    [CrossRef]
  7. N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
    [CrossRef]
  8. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
    [CrossRef]
  9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  10. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
    [CrossRef]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
    [CrossRef] [PubMed]
  13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
    [CrossRef] [PubMed]
  14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
    [CrossRef] [PubMed]
  15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
    [CrossRef]
  16. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
    [CrossRef]
  17. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
    [CrossRef] [PubMed]
  18. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
    [CrossRef] [PubMed]
  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
    [CrossRef]
  20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008).
    [CrossRef] [PubMed]
  21. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt.50(31), G104–G112 (2011).
    [CrossRef] [PubMed]
  22. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express14(13), 6285–6290 (2006).
    [CrossRef] [PubMed]
  23. FDTD Lumerical Solutions Inc, www.lumerical.com .
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  25. M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
    [CrossRef]
  26. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
    [CrossRef]
  27. A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express12(12), 2631–2648 (2004).
    [CrossRef] [PubMed]
  28. V. Halté, A. Benabbas, and J. Y. Bigot, “Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals,” Opt. Express14(7), 2909–2920 (2006).
    [CrossRef] [PubMed]

2011 (2)

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
[CrossRef]

S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt.50(31), G104–G112 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

2008 (6)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008).
[CrossRef] [PubMed]

2007 (2)

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

2004 (4)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

A. R. Zakharian, M. Mansuripur, and J. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express12(12), 2631–2648 (2004).
[CrossRef] [PubMed]

2003 (3)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Benabbas, A.

Bigot, J. Y.

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[CrossRef]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Chen, L.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[CrossRef]

Cryan, M. J.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Edamura, T.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Ersoy, O. K.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
[CrossRef]

Fan, J.

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Furuta, S.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

Garcia-Vidal, F. J.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

Genet, C.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Guo, B.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[CrossRef]

Halté, V.

Heard, P. J.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Hill, M.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Hwang, C. Y.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Ivanov, P. S.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Kan, H.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Kuipers, L.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Künnemeyer, R.

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Lee, B.

Lee, I. M.

Lee, S. Y.

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Mahboub, O.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Mansuripur, M.

Martin-Moreno, L.

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Miyanishi, S.

Moloney, J.

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Ohno, T.

Palacios, S. C.

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Park, J.

Pflügl, C.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Rodrigo, S. G.

Rorison, J. M.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Rubanov, S.

Sanz, D. C.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Sedoglavich, N.

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Sharpe, J. C.

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Siyuan Yu,

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Song, G.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[CrossRef]

Srisungsitthisunti, P.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tian, L.

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Xu, X.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Yu, N.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

Zakharian, A. R.

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Improving near-field confinement of a bowtie aperture using surface plasmon polaritons,” Appl. Phys. Lett.98(22), 223106 (2011).
[CrossRef]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007), http://apl.aip.org/resource/1/applab/v91/i2/p021103_s1 .
[CrossRef]

N. Yu, R. Blanchard, J. Fan, F. Capasso, T. Edamura, M. Yamanishi, and H. Kan, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett.93(18), 181101 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181101_s1 .
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Cryan, M. Hill, D. C. Sanz, P. S. Ivanov, P. J. Heard, L. Tian, Siyuan Yu, and J. M. Rorison, “Focused ion beam-based fabrication of nanostructured photonic devices,” IEEE J. Sel. Top. Quantum Electron.11(6), 1266–1277 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005), http://jjap.jsap.jp/link?JJAP/44/L364/ .
[CrossRef]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol.3(12), 733–737 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Nature (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express (5)

Phys. Rev. Lett. (5)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003), http://prl.aps.org/pdf/PRL/v90/i16/e167401 .
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008), http://www.physicstoday.org/resource/1/phtoad/v61/i5/p44_s1?isAuthorized=no .
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (1)

FDTD Lumerical Solutions Inc, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed elliptical bull’s eye in a free standing Au film. The diameters of the elliptical hole are denoted as d1 and d2 along the x and y axes, respectively. (b) Schematic cross section of the elliptical bull’s eye. The width, depth, and period of the grooves along with the Au-film thickness are denoted as w, s, p, and t respectively. The distance from the aperture center to the center of the first groove is a. The bull’s eye contains 6 grooves on both sides of the Au film. (c) Schematic representation of the illumination condition and its output. We assumed the normal incidence of a plane wave over the bull’s eye with d1 > d2.

Fig. 2
Fig. 2

Plots of transmission intensity versus the collection angle for the proposed bull’s eye for (a) horizontal polarization, and (b) vertical polarization.

Fig. 3
Fig. 3

Comparison of transmission intensity versus the groove depth, s, through the elliptic bull’s eye (w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Fig. 4
Fig. 4

Comparison of transmission intensity versus groove width, w, in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, and (b) vertical polarization.

Fig. 5
Fig. 5

Comparison of transmission intensity versus the groove periodicity p in the proposed elliptic bull’s eye (s = 60 nm, w = 300 nm, a = 600 nm, t = 300 nm) for (a) horizontal polarization, (b) vertical polarization.

Fig. 6
Fig. 6

Comparison of transmission intensity versus the distance from central hole to the center of the first groove a in the proposed elliptic bull’s eye (s = 60 nm, p = 600 nm, w = 300 nm, t = 300 nm) for (a) horizontal polarization and (b) vertical polarization.

Fig. 7
Fig. 7

EOT spectral for various ellipticities in (a) horizontal polarization, and (b) vertical polarization. The inset is the spectral at ε = 0. The geometrical parameters of the bull’s eye were: s = 60 nm, w = 300 nm, p = 600 nm, a = 600 nm, t = 300 nm.

Fig. 8
Fig. 8

Near field intensity profile in log scale for (a) horizontal polarization and (b) vertical polarization. Color bar shows near field intensity with an arbitrary unit. (c) maximum polarization extinction ratio spectrum (d) polarization extinction ratio, Iv/Ih, as a function of the nano-hole ellipticity, ε.

Metrics