Abstract

Previous studies show that, compared to on-off keying (OOK) signaling, pulse-position modulation (PPM) is favorable in FSO/CDMA systems thanks to its energy efficiency and simple detection. Nevertheless, when the system bit rate increases and the transmission distance is far, the FSO/CDMA systems using PPM signaling critically suffer from the impact of pulse broadening caused by dispersion, especially when the modulation level is high. In this paper, we therefore propose to use multi-wavelength PPM (MWPPM) signaling to overcome the limitation of PPM. To further improve the system performance, avalanche photodiode (APD) is also used. The performance of the proposed system is theoretically analyzed using a realistic model of Gaussian pulse propagation. To model the impact of intensity fluctuation caused by the atmospheric turbulence, the log-normal channel is used. We find that, by using MWPPM, the effects of both intensity fluctuation and pulse broadening are mitigated, the BER is therefore significantly improved. Additionally, we quantitatively show that the system performance is further improved by using APD, especially when the average APD gain is chosen properly.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Willebrand and B. S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum38, 40–45 (2001).
    [CrossRef]
  2. Q. Liu, C. Qiao, G. Mitchell, and S. Stanton, “Optical wireless communication networks for first- and last-mile broadband access [Invited],” J. Opt. Netw.4, 807–828 (2005).
    [CrossRef]
  3. T. Ohtsuki, “Performance analysis of atmospheric optical PPM CDMA systems,” J. Lightwave Technol.21, 406–411 (2003).
    [CrossRef]
  4. K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.
  5. M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal godes,” J. Lightwave Technol.54, 1614–1623 (2006).
  6. T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol.25, 2992–3000 (2007).
    [CrossRef]
  7. A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
    [CrossRef]
  8. A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag.40, 83–87 (2002).
    [CrossRef]
  9. X. Zhu and J. M. Khan, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50, 1293–1300 (2002).
    [CrossRef]
  10. C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence on bit-error-rate in an on-off keyed optical wireless system,” in Proceedings of SPIE Free-Space Laser Commun. Laser Imaging, (1997), pp. 126–137.
  11. C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
    [CrossRef]
  12. H. Hemmati, Deep Space Optical Communications (John Wiley and Sons, 2006).
    [CrossRef]
  13. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
    [CrossRef]
  14. T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
    [CrossRef]
  15. E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
    [CrossRef]
  16. I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Springer, 2010).
    [CrossRef]
  17. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).
  18. G. C. Yang and W. C. Kwong, Prime Code with Application to CDMA Optical and Wireless Networks (Artech House, 2002).

2010 (1)

A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
[CrossRef]

2009 (2)

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
[CrossRef]

2007 (2)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
[CrossRef]

T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol.25, 2992–3000 (2007).
[CrossRef]

2006 (1)

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal godes,” J. Lightwave Technol.54, 1614–1623 (2006).

2005 (1)

2003 (1)

2002 (2)

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag.40, 83–87 (2002).
[CrossRef]

X. Zhu and J. M. Khan, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50, 1293–1300 (2002).
[CrossRef]

2001 (1)

H. A. Willebrand and B. S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum38, 40–45 (2001).
[CrossRef]

1998 (1)

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
[CrossRef]

1997 (1)

C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence on bit-error-rate in an on-off keyed optical wireless system,” in Proceedings of SPIE Free-Space Laser Commun. Laser Imaging, (1997), pp. 126–137.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).

Andrews, L. C.

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
[CrossRef]

Bayaki, E.

E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
[CrossRef]

Dang, N. T.

A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
[CrossRef]

Davis, C. C.

C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence on bit-error-rate in an on-off keyed optical wireless system,” in Proceedings of SPIE Free-Space Laser Commun. Laser Imaging, (1997), pp. 126–137.

Djordjevic, I.

I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Springer, 2010).
[CrossRef]

Ghuman, B. S.

H. A. Willebrand and B. S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum38, 40–45 (2001).
[CrossRef]

Hemmati, H.

H. Hemmati, Deep Space Optical Communications (John Wiley and Sons, 2006).
[CrossRef]

Hirano, T.

K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.

Ishimaru, A.

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
[CrossRef]

Jazayerifar, M.

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal godes,” J. Lightwave Technol.54, 1614–1623 (2006).

Karagiannidis, G. K.

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
[CrossRef]

Khan, J. M.

X. Zhu and J. M. Khan, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50, 1293–1300 (2002).
[CrossRef]

Kwong, W. C.

G. C. Yang and W. C. Kwong, Prime Code with Application to CDMA Optical and Wireless Networks (Artech House, 2002).

Liu, Q.

Luu, T. A.

A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
[CrossRef]

Mallik, R.K.

E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
[CrossRef]

Mitchell, G.

Miyazawa, T.

T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol.25, 2992–3000 (2007).
[CrossRef]

K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
[CrossRef]

Ohba, K.

K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.

Ohtsuki, T.

Pham, A. T.

A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
[CrossRef]

Qiao, C.

Ryan, W.

I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Springer, 2010).
[CrossRef]

Salehi, J. A.

M. Jazayerifar and J. A. Salehi, “Atmospheric optical CDMA communication systems via optical orthogonal godes,” J. Lightwave Technol.54, 1614–1623 (2006).

Sandalidis, H.G.

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

Sargent, E. H.

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag.40, 83–87 (2002).
[CrossRef]

Sasase, I.

T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol.25, 2992–3000 (2007).
[CrossRef]

K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.

Schober, R.

E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
[CrossRef]

Smolyaninov, I.

C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence on bit-error-rate in an on-off keyed optical wireless system,” in Proceedings of SPIE Free-Space Laser Commun. Laser Imaging, (1997), pp. 126–137.

Stanton, S.

Stok, A.

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag.40, 83–87 (2002).
[CrossRef]

Tsiftsis, T. A.

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

Uysal, M.

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
[CrossRef]

Vasic, B.

I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Springer, 2010).
[CrossRef]

Willebrand, H. A.

H. A. Willebrand and B. S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum38, 40–45 (2001).
[CrossRef]

Yang, G. C.

G. C. Yang and W. C. Kwong, Prime Code with Application to CDMA Optical and Wireless Networks (Artech House, 2002).

Young, C. Y.

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Khan, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50, 1293–1300 (2002).
[CrossRef]

Appl. Opt (1)

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt37, 7655–7660 (1998).
[CrossRef]

IEEE Commun. Mag. (1)

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag.40, 83–87 (2002).
[CrossRef]

IEEE Spectrum (1)

H. A. Willebrand and B. S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum38, 40–45 (2001).
[CrossRef]

IEEE Trans. Comm. (1)

E. Bayaki, R. Schober, and R.K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Comm.57, 3415–3424 (2009).
[CrossRef]

IEEE Trans. Commun. (1)

X. Zhu and J. M. Khan, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun.50, 1293–1300 (2002).
[CrossRef]

IEEE Trans. Wireless Comm. (2)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Comm.6, 2813–2819 (2007).
[CrossRef]

T. A. Tsiftsis, H.G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Comm.8, 951–957 (2009).
[CrossRef]

IEICE Trans. Fundamentals. (1)

A. T. Pham, T. A. Luu, and N. T. Dang, “Performance bound for Turbo-coded 2-D FSO/CDMA systems over atmospheric turbulence channel,” IEICE Trans. Fundamentals.E93-A, 1745–1337 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Proceedings of SPIE Free-Space Laser Commun. Laser Imaging (1)

C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence on bit-error-rate in an on-off keyed optical wireless system,” in Proceedings of SPIE Free-Space Laser Commun. Laser Imaging, (1997), pp. 126–137.

Other (5)

H. Hemmati, Deep Space Optical Communications (John Wiley and Sons, 2006).
[CrossRef]

I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Springer, 2010).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).

G. C. Yang and W. C. Kwong, Prime Code with Application to CDMA Optical and Wireless Networks (Artech House, 2002).

K. Ohba, T. Hirano, T. Miyazawa, and I. Sasase, “A symbol decision scheme to mitigate effects of scintillations and MAIs in optical atmospheric PPM-CDMA systems,” in Proceedings of IEEE GLOBECOM, (St. Louis, 2005), pp. 1999–2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Modulation schemes: 4-WSK; 4-PPM; and 2-2-MWPPM.

Fig. 2
Fig. 2

Principle of 4-4-MWPPM.

Fig. 3
Fig. 3

A FSO/CDMA system using L-M-MWPPM.

Fig. 4
Fig. 4

2-2-MWPPM modulator/demodulator: (a) modulator and (b) demodulator.

Fig. 5
Fig. 5

BER versus the transmitted power per bit with z = 1.5 km, ḡ = 30, K = 32 users, and Rb = 1 Gbps

Fig. 6
Fig. 6

BER versus the link distance z with Ps = 0 dBm, ḡ = 30, K = 32 users, and Rb = 1 Gbps

Fig. 7
Fig. 7

BER versus the bit rate per user with Ps = 0 dBm, ḡ = 30, z = 1.5 km, and K = 32 users.

Fig. 8
Fig. 8

BER versus the average APD gain (ḡ) with Ps = −2 dBm, z = 1.5 km, K = 32 users, and Rb = 1 Gbps.

Tables (1)

Tables Icon

Table 1 System Parameters and Constants.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

h = I I m = exp ( 2 X ) ,
f x ( X ) = 1 2 π σ x exp ( ( X μ x ) 2 2 σ x 2 ) .
f I ( h ) = 1 8 π h σ x exp ( [ ln ( h ) + 2 σ x 2 ] 2 8 σ x 2 ) ,
σ x 2 = 0.124 ( 2 π λ ) 7 / 6 z 11 / 6 C n 2 ,
A i ( t ) = P p exp ( t 2 T 0 2 ) ,
A r ( t ) = P p A π θ 2 z 2 exp ( β z ) T 0 T 0 2 + 8 α exp ( t 2 T 0 2 + 8 α ) ,
α = 0.3908 C n 2 z L 0 5 / 3 c 2 ,
T 0 = log 2 N / R b M F 4 ln 2 .
P p = 2 T c π T 0 P c .
E ( u , v ) ( t ) a w h d A r ( t ) exp { j ( ω λ v t + ϕ λ v ) } + k = 1 κ ( u , v ) h k A r ( t ) exp { j ( ω λ v t + ϕ λ v ) } ,
μ I ( u , v ) = g ¯ P ¯ c ( w h d + k = 1 κ ( u , v ) h k ) ,
P ¯ c = 1 T c T c / 2 T c / 2 | A r ( t ) | 2 d t .
σ I ( u , v ) 2 = 2 e F a g ¯ 2 ( P ¯ c w h d + P ¯ c k = 1 κ ( u , v ) h k + P b ) Δ f + 4 k B T R L Δ f ,
F a = ζ g ¯ + ( 2 1 g ¯ ) ( 1 ζ ) ,
B E R = N 2 ( N 1 ) P e .
P e v = 1 L 1 u = 1 M 1 Pr { I ( 0 , 0 ) I ( u , v ) | s = s 0 } = = ( N 1 ) l 1 = 0 γ ( K 1 ) Pr { κ ( 1 , 0 ) = l 1 } Pr { I ( 0 , 0 ) I ( 1 , 0 ) | s = s 0 , κ ( 1 , 0 ) = l 1 }
Pr ( κ ( 1 , 0 ) = l 1 ) = ( γ ( K 1 ) l 1 ) ( w 2 F 2 ) l 1 ( 1 w 2 F 2 ) N 1 l 1 .
Pr ( I ( 0 , 0 ) I ( 1 , 0 ) | s = s 0 , κ ( 1 , 0 ) = l 1 ) = h f I ( h ) × Q ( μ I ( 0 , 0 ) ( h ) μ I ( 1 , 0 ) ( h ) σ I ( 0 , 0 ) 2 ( h ) + σ I ( 1 , 0 ) 2 ( h ) ) d h ,
μ I ( 0 , 0 ) = g ¯ P ¯ c w h d ,
σ I ( 0 , 0 ) 2 = 2 e F a g ¯ 2 ( P ¯ c w h d + P b ) Δ f + 4 k B T R L Δ f ,
μ I ( 1 , 0 ) = g ¯ P ¯ c k = 1 κ u h k ,
σ I ( 1 , 0 ) 2 = 2 e F a g ¯ 2 ( P ¯ c k = 1 κ 1 h k + P b ) Δ f + 4 k B T R L Δ f .
P c = 1 T c T c / 2 T c / 2 | A i ( t ) | 2 d t .
P c = P p T s exp ( 2 t 2 T 0 2 ) d t = P p T 0 2 T c exp ( x 2 ) d x = P p π T 0 2 T c ,

Metrics