Abstract

A synthetic polymeric lens was designed and fabricated based on a bio-inspired, “Age=5” human eye lens design by utilizing a nanolayered polymer film-based technique. The internal refractive index distribution of an anterior and posterior GRIN lens were characterized and confirmed against design by µATR-FTIR. 3D surface topography of the fabricated aspheric anterior and posterior lenses was measured by placido-cone topography and exhibited confirmation of the desired aspheric surface shape. Furthermore, the wavefronts of aspheric posterior GRIN and PMMA lenses were measured and simulated by interferometry and Zemax software, respectively. Their results show that the gradient index distribution reduces the overall wavefront error as compared a homogenous PMMA lens of an identical geometry. Finally, the anterior and posterior GRIN lenses were assembled into a bio-inspired GRIN human eye lens through which a clear imaging was possible.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
    [CrossRef]
  2. R. H. H. Kröger and A. Gislén, “Compensation for longitudinal chromatic aberration in the eye of the firefly squid,” Vision Res.44(18), 2129–2134 (2004).
    [CrossRef] [PubMed]
  3. D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
    [CrossRef] [PubMed]
  4. W. S. Jagger and P. J. Sands, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39(17), 2841–2852 (1999).
    [CrossRef] [PubMed]
  5. D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
    [CrossRef] [PubMed]
  6. B. Pierscionek, “Species variability in optical parameters of the eye lens,” Clin. Exp. Optom.76(1), 22–25 (1993).
    [CrossRef]
  7. R. C. Augusteyn and A. Stevens, “Macromolecular structure of the eye lens,” Prog. Polym. Sci.23(3), 375–413 (1998).
    [CrossRef]
  8. R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature301(5901), 618–620 (1983).
    [CrossRef] [PubMed]
  9. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics2(10), 586–589 (2008).
    [CrossRef]
  10. J. F. Koretz and G. H. Handelman, “How the human eye focuses,” Sci. Am.259(1), 92–99 (1988).
    [CrossRef] [PubMed]
  11. Y. Koike, Y. Takezawa, and Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt.27(3), 486–491 (1988).
    [CrossRef] [PubMed]
  12. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
    [CrossRef] [PubMed]
  13. M. Ponting, A. Hiltner, and E. Baer, “Polymer Nanostructures by Forced Assembly: Process, Structure, Properties,” Macromol. Symp.294(1), 19–32 (2010).
    [CrossRef]
  14. G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express16(15), 11540–11547 (2008).
    [PubMed]
  15. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
    [CrossRef] [PubMed]
  16. J. A. Díaz, C. Pizarro, and J. Arasa, “Single dispersive gradient-index profile for the aging human eye lens,” J. Opt. Soc. Am. A25(1), 250–261 (2008).
    [CrossRef]
  17. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A27(11), 2432–2441 (2010).
    [CrossRef] [PubMed]
  18. Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
    [CrossRef]
  19. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Leith Walk, 2002), Chap. 1.
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light, 7th Edition (Cambridge Univ. Press, 2002), Chap. 9.

2011 (1)

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Ponting, A. Hiltner, and E. Baer, “Polymer Nanostructures by Forced Assembly: Process, Structure, Properties,” Macromol. Symp.294(1), 19–32 (2010).
[CrossRef]

C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A27(11), 2432–2441 (2010).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
[CrossRef]

2005 (3)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

2004 (1)

R. H. H. Kröger and A. Gislén, “Compensation for longitudinal chromatic aberration in the eye of the firefly squid,” Vision Res.44(18), 2129–2134 (2004).
[CrossRef] [PubMed]

2002 (1)

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

1999 (1)

W. S. Jagger and P. J. Sands, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39(17), 2841–2852 (1999).
[CrossRef] [PubMed]

1998 (1)

R. C. Augusteyn and A. Stevens, “Macromolecular structure of the eye lens,” Prog. Polym. Sci.23(3), 375–413 (1998).
[CrossRef]

1993 (1)

B. Pierscionek, “Species variability in optical parameters of the eye lens,” Clin. Exp. Optom.76(1), 22–25 (1993).
[CrossRef]

1988 (2)

1983 (1)

R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature301(5901), 618–620 (1983).
[CrossRef] [PubMed]

Arasa, J.

Artal, P.

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics2(10), 586–589 (2008).
[CrossRef]

Augusteyn, R. C.

R. C. Augusteyn and A. Stevens, “Macromolecular structure of the eye lens,” Prog. Polym. Sci.23(3), 375–413 (1998).
[CrossRef]

Baer, E.

M. Ponting, A. Hiltner, and E. Baer, “Polymer Nanostructures by Forced Assembly: Process, Structure, Properties,” Macromol. Symp.294(1), 19–32 (2010).
[CrossRef]

G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express16(15), 11540–11547 (2008).
[PubMed]

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
[CrossRef]

Beadie, G.

Buckley, L.

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

Campbell, C. E.

Coates, M. M.

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Díaz, J. A.

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

Fernald, R. D.

R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature301(5901), 618–620 (1983).
[CrossRef] [PubMed]

Fleet, E.

Garm, A.

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Gislén, A.

R. H. H. Kröger and A. Gislén, “Compensation for longitudinal chromatic aberration in the eye of the firefly squid,” Vision Res.44(18), 2129–2134 (2004).
[CrossRef] [PubMed]

Gislén, L.

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Handelman, G. H.

J. F. Koretz and G. H. Handelman, “How the human eye focuses,” Sci. Am.259(1), 92–99 (1988).
[CrossRef] [PubMed]

Hiltner, A.

M. Ponting, A. Hiltner, and E. Baer, “Polymer Nanostructures by Forced Assembly: Process, Structure, Properties,” Macromol. Symp.294(1), 19–32 (2010).
[CrossRef]

G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express16(15), 11540–11547 (2008).
[PubMed]

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
[CrossRef]

Jagger, W. S.

W. S. Jagger and P. J. Sands, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39(17), 2841–2852 (1999).
[CrossRef] [PubMed]

Jin, Y.

Kamdar, A. R.

Kazmierczak, T.

Koike, Y.

Koretz, J. F.

J. F. Koretz and G. H. Handelman, “How the human eye focuses,” Sci. Am.259(1), 92–99 (1988).
[CrossRef] [PubMed]

Kröger, R. H. H.

R. H. H. Kröger and A. Gislén, “Compensation for longitudinal chromatic aberration in the eye of the firefly squid,” Vision Res.44(18), 2129–2134 (2004).
[CrossRef] [PubMed]

Lane, P. A.

Liu, Y.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Mikkelsen, M. H.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Nilsson, D. E.

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Ohtsuka, Y.

Pierscionek, B.

B. Pierscionek, “Species variability in optical parameters of the eye lens,” Clin. Exp. Optom.76(1), 22–25 (1993).
[CrossRef]

Pizarro, C.

Ponting, M.

Rosenberg, A.

Sands, P. J.

W. S. Jagger and P. J. Sands, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39(17), 2841–2852 (1999).
[CrossRef] [PubMed]

Sands, R.

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

Scribner, D.

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

Shirk, J. S.

Skogh, C.

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Stevens, A.

R. C. Augusteyn and A. Stevens, “Macromolecular structure of the eye lens,” Prog. Polym. Sci.23(3), 375–413 (1998).
[CrossRef]

Tabernero, J.

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics2(10), 586–589 (2008).
[CrossRef]

Tai, H.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
[CrossRef]

Takezawa, Y.

Valentine, J.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

Wright, S. E.

R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature301(5901), 618–620 (1983).
[CrossRef] [PubMed]

Yang, Y.

Zentgraf, T.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Zhang, X.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Zuccarello, G.

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

G. Zuccarello, D. Scribner, R. Sands, and L. Buckley, “Materials for bio-inspired optics,” Adv. Mater. (Deerfield Beach Fla.)14(18), 1261–1264 (2002).
[CrossRef]

Appl. Opt. (1)

Clin. Exp. Optom. (1)

B. Pierscionek, “Species variability in optical parameters of the eye lens,” Clin. Exp. Optom.76(1), 22–25 (1993).
[CrossRef]

J. Appl. Polym. Sci. (1)

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bio inspired lenses with a gradient refractive index,” J. Appl. Polym. Sci.103(3), 1834–1841 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

Macromol. Symp. (1)

M. Ponting, A. Hiltner, and E. Baer, “Polymer Nanostructures by Forced Assembly: Process, Structure, Properties,” Macromol. Symp.294(1), 19–32 (2010).
[CrossRef]

Nat. Nanotechnol. (1)

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics2(10), 586–589 (2008).
[CrossRef]

Nature (3)

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature301(5901), 618–620 (1983).
[CrossRef] [PubMed]

D. E. Nilsson, L. Gislén, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature435(7039), 201–205 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Prog. Polym. Sci. (1)

R. C. Augusteyn and A. Stevens, “Macromolecular structure of the eye lens,” Prog. Polym. Sci.23(3), 375–413 (1998).
[CrossRef]

Sci. Am. (1)

J. F. Koretz and G. H. Handelman, “How the human eye focuses,” Sci. Am.259(1), 92–99 (1988).
[CrossRef] [PubMed]

Vision Res. (3)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

W. S. Jagger and P. J. Sands, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39(17), 2841–2852 (1999).
[CrossRef] [PubMed]

R. H. H. Kröger and A. Gislén, “Compensation for longitudinal chromatic aberration in the eye of the firefly squid,” Vision Res.44(18), 2129–2134 (2004).
[CrossRef] [PubMed]

Other (2)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Leith Walk, 2002), Chap. 1.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light, 7th Edition (Cambridge Univ. Press, 2002), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive index distribution of the anterior and posterior lenses of an “Age=5” human eye lens represented in the Diaz’s and Code V models.

Fig. 2
Fig. 2

Design of a bio-inspired polymeric gradient refractive index (GRIN) human eye lens. a) Fabrication illustration to create the bio-inspired GRIN anterior and posterior lenses. b), refractive index distribution of “Age=5” human eye and buildable bio-inspired GRIN lenses. c), RMS wave error of bio-inspired GRIN lenses with two different sets of aspheric coefficient for anterior and posterior lenses simulated by Zemax software: (Top) Q anterior = −5, and Q posterior = −4; (Bottom) Q anterior = 0.5, and Q posterior = −5.

Fig. 3
Fig. 3

Stacking recipes of anterior (left) and posterior (right) lens sheets with buffer layers.

Fig. 4
Fig. 4

Refractive index distribution of anterior (left) and posterior (right) lens sheets measured by µATR-FTIR.

Fig. 5
Fig. 5

Fabricated lens images (a and d) and measured geometry surface profiles (b/c and e/f) of the aspheric anterior and posterior bio-inspired human eye GRIN lenses.

Fig. 6
Fig. 6

Comparison plot of experimentally measured and simulated wavefront for as built bio-inspired aspheric posterior lenses. a-b, Measured (a) and numerical simulated (b) wavefront of aspheric posterior GRIN lens. c-d, Measured (c) and numerical simulated (d) wavefront of aspheric posterior PMMA reference lens. Vertical axis in units of waves (633nm). Planar values are unit less measures of aperture across the wavefront sensor.

Fig. 7
Fig. 7

Experimentally obtained image of a Case Western Reserve University logo taken through a bio-inspired “age=5” human eye GRIN lens. The logo was placed about 33 cm from a bare CCD camera. The Case logo was laser printed onto standard letter paper, illuminated by an external light source, and imaged onto the camera by a bio-inspired “age=5” human eye GRIN lens.

Tables (2)

Tables Icon

Table 1 Polynomial Coefficients of an “Age=5” Human Eye Lens Used in Code V Model

Tables Icon

Table 2 Polynomial Coefficients of the Bio-inspired Anterior and Posterior Lenses

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d L. (mm)=2.93+0.236×age
R anterior (mm)=12.70.058×age
Q anterior =5
R Posterior (mm)=5.90.0015×age
Q posterior =4
n(λ,x,y,z)= n 0 (λ)+ n 1 (cos( n 2 z)1)+ n 3 sin( n 4 z)+ n 5 ( x 2 + y 2 )
n(r)= n 0 + n 1 (rR)+ n 2 (rR) 2 + n 3 (rR) 3 + n 4 (rR) 4
Where r= R | R | x 2 + y 2 + (Rz) 2
h 2 +(1+Q) z 2 2zR=0

Metrics