Abstract

We investigate the modulation of C60 monolayers on the nanocavity plasmonic (NCP) emission on Au(111) by tunneling electron excitation from a scanning tunneling microscope (STM) tip. STM induced luminescence spectra show not only suppressed emission, but also significant redshift of NCP emission bands on the C60 molecules relative to the bare metal surface. The redshift, together with the bias- and coverage-dependent emission feature, indicates that the C60 molecules act beyond a pure dielectric spacer, their electronic states are heavily involved in the inelastic tunneling process for plasmonic emission. A modified quantum cutoff relation is proposed to explain qualitatively the observed emission feature at both bias polarities. We also demonstrate molecularly resolved optical contrast on the C60 monolayer and discuss the contrast mechanism briefly.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
    [CrossRef] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
    [CrossRef] [PubMed]
  3. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  4. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
    [CrossRef] [PubMed]
  5. G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
    [CrossRef] [PubMed]
  6. X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
    [CrossRef] [PubMed]
  7. Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
    [CrossRef] [PubMed]
  8. E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
    [CrossRef] [PubMed]
  9. S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
    [CrossRef]
  10. C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
    [CrossRef] [PubMed]
  11. F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
    [CrossRef] [PubMed]
  12. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
    [CrossRef]
  13. A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
    [CrossRef] [PubMed]
  14. J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
    [CrossRef] [PubMed]
  15. F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
    [CrossRef]
  16. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
    [CrossRef] [PubMed]
  17. K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
    [CrossRef]
  18. G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
    [CrossRef]
  19. Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
    [CrossRef]
  20. Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
    [CrossRef]
  21. N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
    [CrossRef]
  22. C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
    [CrossRef] [PubMed]
  23. S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev.97(6), 1793–1896 (1997).
    [CrossRef] [PubMed]
  24. Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
    [CrossRef]
  25. X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
    [CrossRef]
  26. J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
    [CrossRef] [PubMed]
  27. M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
    [CrossRef]
  28. P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
    [CrossRef] [PubMed]
  29. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
    [CrossRef]
  30. X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
    [CrossRef] [PubMed]
  31. R. Berndt and J. K. Gimzewski, “Isochromat spectroscopy of photons emitted from metal-surfaces in an STM,” Ann. Phys.505(2), 133–140 (1993).
    [CrossRef]
  32. G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
    [CrossRef] [PubMed]

2011

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

2010

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
[CrossRef]

2009

F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

2008

G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
[CrossRef] [PubMed]

S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
[CrossRef]

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

2005

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

2004

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

2003

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
[CrossRef] [PubMed]

2002

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
[CrossRef]

2001

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
[CrossRef]

2000

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
[CrossRef]

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

1997

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev.97(6), 1793–1896 (1997).
[CrossRef] [PubMed]

1993

R. Berndt and J. K. Gimzewski, “Isochromat spectroscopy of photons emitted from metal-surfaces in an STM,” Ann. Phys.505(2), 133–140 (1993).
[CrossRef]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

1991

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

1990

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
[CrossRef] [PubMed]

Aizpurua, J.

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Apell, P.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
[CrossRef] [PubMed]

Apell, S. P.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
[CrossRef]

Arafune, R.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Becker, M.

G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
[CrossRef] [PubMed]

Berndt, R.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
[CrossRef] [PubMed]

G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
[CrossRef]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
[CrossRef]

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

R. Berndt and J. K. Gimzewski, “Isochromat spectroscopy of photons emitted from metal-surfaces in an STM,” Ann. Phys.505(2), 133–140 (1993).
[CrossRef]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Bing, W.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Blüm, M. C.

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

Bobisch, C. A.

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Cavar, E.

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

Changgan, Z.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Chen, C.

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Chen, D. M.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Chen, L. G.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Chergui, M.

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

Chu, P.

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Chulkov, E. V.

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

Crampin, S.

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

Crommie, M. F.

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Dong, Z. C.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
[CrossRef]

Dorozhkin, P. S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Echenique, P. M.

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

Forrest, S. R.

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev.97(6), 1793–1896 (1997).
[CrossRef] [PubMed]

Fujita, D.

Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
[CrossRef]

Gabutti, S.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

Gaisch, R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Gao, B.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Gao, H. Y.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

Geng, F.

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Gimzewski, J. K.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

R. Berndt and J. K. Gimzewski, “Isochromat spectroscopy of photons emitted from metal-surfaces in an STM,” Ann. Phys.505(2), 133–140 (1993).
[CrossRef]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Grobis, M.

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Guo, X. L.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Haiqian, W.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Ho, W.

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
[CrossRef]

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
[CrossRef] [PubMed]

Hoffmann, G.

G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
[CrossRef]

Hou, J. G.

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Jinlong, Y.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Johansson, P.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
[CrossRef] [PubMed]

Kabakchiev, A.

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

Kern, K.

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

Khoo, K. H.

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Kimura, K.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Kliewer, J.

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Kuhnke, K.

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

Lanfeng, Y.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Liao, Y.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Libioulle, L.

G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
[CrossRef]

Louie, S. G.

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Lu, X.

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

Luo, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

Lutz, T.

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

Mashiko, S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Matino, F.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

Mayor, M.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

Meguro, K.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Meng, Q. S.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Miki, K.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Mills, D. L.

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Monreal, R.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
[CrossRef] [PubMed]

Nazin, G. V.

S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
[CrossRef]

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
[CrossRef] [PubMed]

Nejoh, H.

Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Okamoto, T.

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

Patthey, F.

F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
[CrossRef] [PubMed]

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

Pivetta, M.

F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
[CrossRef]

F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
[CrossRef] [PubMed]

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

Qingshi, Z.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Qiu, X. H.

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
[CrossRef] [PubMed]

Qunxiang, L.

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Reihl, B.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Rossel, F.

F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
[CrossRef]

F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
[CrossRef] [PubMed]

Sakamoto, K.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Satoh, M.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Schlittler, R. R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Schneider, N. L.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

Schneider, W. D.

F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
[CrossRef]

F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, “Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling,” Opt. Express17(4), 2714–2721 (2009).
[CrossRef] [PubMed]

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Schull, G.

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
[CrossRef] [PubMed]

Silkin, V. M.

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

Tao, X.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

Trifonov, A. S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Tschudy, M.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Uehara, Y.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Ushioda, S.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Wachowiak, A.

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

Wu, S. W.

S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
[CrossRef]

Yamachika, R.

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

Yang, H.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Yang, J. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

Yokoyama, S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Zhang, R.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Zhang, X. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Zhang, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

Ann. Phys.

R. Berndt and J. K. Gimzewski, “Isochromat spectroscopy of photons emitted from metal-surfaces in an STM,” Ann. Phys.505(2), 133–140 (1993).
[CrossRef]

Appl. Phys. Lett.

Y. Zhang, F. Geng, H. Y. Gao, Y. Liao, Z. C. Dong, and J. G. Hou, “Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons,” Appl. Phys. Lett.97(24), 243101 (2010).
[CrossRef]

M. Grobis, A. Wachowiak, R. Yamachika, and M. F. Crommie, “Tuning negative differential resistance in a molecular film,” Appl. Phys. Lett.86(20), 204102 (2005).
[CrossRef]

Chem. Rev.

S. R. Forrest, “Ultrathin organic films grown by organic molecular beam deposition and related techniques,” Chem. Rev.97(6), 1793–1896 (1997).
[CrossRef] [PubMed]

ChemPhysChem

A. Kabakchiev, K. Kuhnke, T. Lutz, and K. Kern, “Electroluminescence from individual pentacene nanocrystals,” ChemPhysChem11(16), 3412–3416 (2010).
[CrossRef] [PubMed]

J. Chem. Phys.

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys.130(8), 084706 (2009).
[CrossRef] [PubMed]

Nat. Photonics

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010).
[CrossRef]

Nature

J. G. Hou, Y. Jinlong, W. Haiqian, L. Qunxiang, Z. Changgan, Y. Lanfeng, W. Bing, D. M. Chen, and Z. Qingshi, “Topology of two-dimensional C60 domains,” Nature409(6818), 304–305 (2001).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

G. Hoffmann, L. Libioulle, and R. Berndt, “Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution,” Phys. Rev. B65(21), 212107 (2002).
[CrossRef]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B79(7), 075406 (2009).
[CrossRef]

S. W. Wu, G. V. Nazin, and W. Ho, “Intramolecular photon emission from a single molecule in a scanning tunneling microscope,” Phys. Rev. B77(20), 205430 (2008).
[CrossRef]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62(3), 2065–2073 (2000).
[CrossRef]

Z. C. Dong, D. Fujita, and H. Nejoh, “Adsorption and tunneling of atomic scale lines of indium and lead on Si(100),” Phys. Rev. B63(11), 115402 (2001).
[CrossRef]

X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, “Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study,” Phys. Rev. B70(11), 115418 (2004).
[CrossRef]

N. L. Schneider, F. Matino, G. Schull, S. Gabutti, M. Mayor, and R. Berndt, “Light emission from a double-decker molecule on a metal surface,” Phys. Rev. B84(15), 153403 (2011).
[CrossRef]

Phys. Rev. B Condens. Matter

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B Condens. Matter42(14), 9210–9213 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. V. Nazin, X. H. Qiu, and W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett.90(21), 216110 (2003).
[CrossRef] [PubMed]

C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, “Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution,” Phys. Rev. Lett.105(21), 217402 (2010).
[CrossRef] [PubMed]

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett.92(8), 086801 (2004).
[CrossRef] [PubMed]

E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, “Fluorescence and phosphorescence from individual molecules excited by local electron tunneling,” Phys. Rev. Lett.95(19), 196102 (2005).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

G. Schull, M. Becker, and R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett.101(13), 136801 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao, and Z. C. Dong, “Fabrication of silver tips for scanning tunneling microscope induced luminescence,” Rev. Sci. Instrum.82(8), 083101 (2011).
[CrossRef] [PubMed]

Science

J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, “Dimensionality Effects in the Lifetime of Surface States,” Science288(5470), 1399–1402 (2000).
[CrossRef] [PubMed]

X. H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science299(5606), 542–546 (2003).
[CrossRef] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Surf. Sci.

K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, “Light emission spectra of the monolayer-island of C60 molecules on Au(111) induced by scanning tunneling microscope,” Surf. Sci.502-503, 149–155 (2002).
[CrossRef]

Surf. Sci. Rep.

F. Rossel, M. Pivetta, and W. D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep.65(5), 129–144 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic junction geometry of C60 molecules on Au(111). (b) STM image (2.5 V, 100 pA, 15 × 15 nm2) at a coverage of ~1.3 ML. The inset is a high-resolution image showing different molecular orientations adsorbed on Au. (c) dI/dV spectra on the bare Au(111) (dotted), 1st-ML C60 (dashed) and 2nd-ML C60 (solid). (d) STML spectra (3.0 V, 200 pA, 60 s) on Au (dotted), 1st-ML C60 (dashed) and 2nd-ML C60 (solid), respectively.

Fig. 2
Fig. 2

Photon maps of C60 on Au(111) (2.8 V, 200 pA, 15 × 15 nm2, 2 ms/pixel) acquired at a coverage of ~0.6 ML (a) and ~1.3 ML (b), respectively. (c) and (d) are high-resolution images for STM topograph and simultaneously acquired photon map on a 1st-ML C60 island using a different tip (~0.3 ML, 2.8 V, 800 pA, 5 × 5 nm2, 2 ms/pixel). The representative sites for the on-top and inter-molecular positions are marked as “+” and “×”, respectively. (e) Height profile of the line trace indicated in (c). (f) Photon count profile for the same line trace in (d). The shot-noise of the signals (raw) follows the Poissonian counting statistics. (g) Inverted photon map processed from (d), showing very similar image contrast to the STM topograph in (c). (h) Current profile for the same line trace shown in the inset of the simultaneously recorded current image. (i) and (j) are site-specific differential conductance spectra and STML spectra (2.8 V, 800 pA, 10 s) for the representative sites marked in (c), respectively on the top of molecules (“+”) and in-between molecules (“×”). The emission spectra have been subtracted by the background contribution to highlight the net intensity variation and are normalized to the highest emission intensity in the spectra to show the relative intensity ratio.

Fig. 3
Fig. 3

STML spectra at different bias voltages (200 pA, 60 s) on different surfaces: (a) the bare Au(111), (b) the 1st-ML C60, and (c) the 2nd-ML C60. The increase of onset voltages is evident with increasing coverage. The thin dashed lines in (a) and (c) are plotted to guide the understanding on the quantum cutoffs, hv≤eV for Au(111) and hv≤eV-EL for the 2nd-ML C60 molecules, in which EL≈1.2 eV.

Fig. 4
Fig. 4

Voltage dependence of photon counts acquired on the bare Au(111) (■), 1st-ML C60 (●) and 2nd-ML C60 (▴) through isochromatic spectra with photon energies of 1.77 ± 0.05 eV. The horizontal dashed line shows the average dark count level of the PMT detector. The tunneling current used was 200 pA on Au(111) and 500 pA on C60 films. Each data point represents the photon count for an acquisition time of 5 s averaged over 30 individual measurements at each given bias. The standard deviations for each data point are calculated using the mean-square-error formula through the statistical analysis of 30 individual measurement data, and are shown by the error bars in the figure. The standard deviations appear to follow roughly the Poissonian counting statistics. A smaller relative uncertainty can be expected if a longer acquisition time is used in each measurement.

Fig. 5
Fig. 5

(a) STML spectra acquired on the 2nd-ML C60 at different negative bias (500 pA, 60 s). (b) Wavelength-dependent intensity ratio of high-bias STML spectra in (a) divided by the nearly featureless spectrum at −3.9 V (plotted as the horizontal dashed line) to show more clearly the energy cutoff positions marked by arrows.

Fig. 6
Fig. 6

Schematic mechanism of NCP emission on C60 molecules showing the IET excitation channels at (a) positive bias and (b) negative bias. Channel 1 refers to the IET process from the tip to C60 LUMO in (a) or from the HOMO state to the tip in (b), while channel 2 refers to the IET between the tip and Au substrate directly.

Metrics