Abstract

An Indium Phosphide-based device, switched by telecommunication wavelength laser pulses capable of operating at microwave frequencies up to 15 GHz has been designed and fabricated. Initial results confirm that using high energy nitrogen ion implantation to create EL-2 type trapping levels produces a photocarrier recombination time of a few picoseconds. The ion size and mass selected produces uniform bulk point defects in an In0.53Ga0.47As light absorbing region leading to high photocurrent mobility not exhibited in heavy ion irradiated samples resulting in a reduced peak pulse power requirement to switch the device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett.26(3), 101–103 (1975).
    [CrossRef]
  2. R. Urata, R. Takahashi, V. Sabnis, D. Miller, and J. Harris “High-speed Sample and Hold using Low Temperature Grown GaAs MSM switches for Photonic A/D Conversion,” CLEO 2001 Tech. Dig. 66–67, May 2001.
  3. A. Kroktus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol.20(7), S142–S150 (2005).
    [CrossRef]
  4. T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
    [CrossRef]
  5. J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
    [CrossRef]
  6. J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
    [CrossRef]
  7. E. P. Burr, M. Pantouvaki, A. J. Seeds, R. M. Gwilliam, S. M. Pinches, and C. C. Button, “Wavelength conversion of 1.53-microm-wavelength picosecond pulses in an ion-implanted multiple-quantum-well all-optical switch,” Opt. Lett.28(6), 483–485 (2003).
    [CrossRef] [PubMed]

2009 (1)

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

2005 (1)

A. Kroktus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol.20(7), S142–S150 (2005).
[CrossRef]

2004 (1)

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

2003 (1)

1990 (1)

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

1975 (1)

D. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett.26(3), 101–103 (1975).
[CrossRef]

Auston, D.

D. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett.26(3), 101–103 (1975).
[CrossRef]

Bjarnason, J.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Brown, E.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Burr, E. P.

Button, C. C.

Chan, T.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Coutaz, J.-L.

A. Kroktus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol.20(7), S142–S150 (2005).
[CrossRef]

Delagnes, J.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Driscoll, D.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Fekete, L.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Gossard, A.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Gwilliam, R. M.

Hanson, M.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Kadlec, F.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Kamiya, T.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Kimura, T.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Koike, K.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Kroktus, A.

A. Kroktus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol.20(7), S142–S150 (2005).
[CrossRef]

Kuzel, P.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Lee, A.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Mangeney, J.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Martin, M.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Morita, T.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Mounaix, P.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Muller, R.

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

Nemec, H.

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Pantouvaki, M.

Pinches, S. M.

Seeds, A. J.

Yamamura, S.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Yugo, S.

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

D. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett.26(3), 101–103 (1975).
[CrossRef]

J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12uW peak output power,” Appl. Phys. Lett.85(18), 3983–3985 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Delagnes, P. Mounaix, H. Nemec, L. Fekete, F. Kadlec, P. Kuzel, M. Martin, and J. Mangeney, “High photocarrier mobility in ultrafast ion-irradiated In0.53Ga0.47As for terahertz applications,” J. Phys. D Appl. Phys.42(19), 195103 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kimura, S. Yamamura, K. Koike, T. Morita, S. Yugo, and T. Kamiya, “Realization of Fast InGaAs Photoconductive Response by Ion Implantation and Annealing with No Degradation of Peak Responsivity,” Jpn. J. Appl. Phys.29(7), 1270–1275 (1990).
[CrossRef]

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

A. Kroktus and J.-L. Coutaz, “Non-stoichiometric semiconductor materials for terahertz optoelectronics applications,” Semicond. Sci. Technol.20(7), S142–S150 (2005).
[CrossRef]

Other (1)

R. Urata, R. Takahashi, V. Sabnis, D. Miller, and J. Harris “High-speed Sample and Hold using Low Temperature Grown GaAs MSM switches for Photonic A/D Conversion,” CLEO 2001 Tech. Dig. 66–67, May 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Micrograph of (a) InGaAs mesa with interdigitated electrodes and (b) complete device with coplanar waveguide upon Fe:InP dielectric

Fig. 2
Fig. 2

In0.53Ga0.47As band structure with EL-2 trapping level

Fig. g003
Fig. g003

Fig. 3. (a) Detail of mesa structure showing InGaAs/n-InP/n-InGaAs layers (b) Interdigitated electrode resist pattern on the etched mesa.

Fig. 4
Fig. 4

Plots of device (a) dark current and (b) Off resistance over bias of 0 to 1 V

Fig. 5
Fig. 5

(a) Plot of Current vs. Bias voltage for dark and illuminated switch by 1550 nm laser. (b) Carrier concentration derived from switch conductance vs. incident laser (CW) power.

Fig. 6
Fig. 6

Temporal response of implanted Ohmic Switch biased at 4 V illuminated by 2 ps 1550 nm pulse.

Fig. 7
Fig. 7

S21 response for switch in off state with predicted response at Ron = 50 Ω

Fig. 8
Fig. 8

Equivalent circuit for switch in off state

Fig. 9
Fig. 9

Output spectra of switch illuminated by 1550nm mode-locked laser with 3.75 MHz repetition rate showing modulation sidebands at 1GHz, 10 GHz and 15 GHz

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n photo P opt

Metrics