Abstract

Diode and collimator/multiplexer functions are suggested to be combined in one device that is based on a thin metallic grating with a single subwavelength slit. A proper choice of the structural (a)symmetry of the grating can result in obtaining one-way collimation and multiplexing with a single on-axis or off-axis, or two off-axis narrow outgoing beams. It is possible due to freedom in utilizing different combinations of the excitation conditions of the spoof surface plasmons at the four grating parts – right and left front-side and right and left back-side ones. Such a combining provides one with an efficient tool to engineer one-way collimators and multiplexers with the desired characteristics. Strong asymmetry in transmission with respect to the incidence direction (forward vs backward case) can be obtained within a wide range of variation of the incident beam parameters, i.e., angle of incidence and frequency, while the outgoing radiation is concentrated within a narrow range of the observation angle variation. Most of the observed asymmetric transmission features can be qualitatively explained using the concept of the equivalent source placed inside the slit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
    [CrossRef] [PubMed]
  4. H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express13(5), 1666–1671 (2005).
    [CrossRef] [PubMed]
  5. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
    [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  7. H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B23(3), 419–422 (2006).
    [CrossRef]
  8. Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
    [CrossRef]
  9. N. F. Yu and F. Capasso, “Wavefront engineering for mid-infrared and terahertz quantum cascade lasers,” J. Opt. Soc. Am. B27(11), B18–B35 (2010).
    [CrossRef]
  10. A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
    [CrossRef] [PubMed]
  11. A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express17(16), 13335–13345 (2009).
    [CrossRef] [PubMed]
  12. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
    [CrossRef] [PubMed]
  13. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef]
  14. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
    [CrossRef] [PubMed]
  15. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
    [CrossRef]
  16. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
    [CrossRef]
  17. D. Z. Lin, T. D. Cheng, C. K. Chang, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express15(5), 2585–2591 (2007).
    [CrossRef] [PubMed]
  18. Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express16(7), 4487–4493 (2008).
    [CrossRef] [PubMed]
  19. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
    [CrossRef] [PubMed]
  20. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
    [CrossRef]
  21. H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
    [CrossRef]
  22. Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
    [CrossRef] [PubMed]
  23. J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
    [CrossRef]
  24. S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
    [CrossRef]
  25. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
    [CrossRef]
  26. N. Bonod, E. Popov, L. F. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express15(18), 11427–11432 (2007).
    [CrossRef] [PubMed]
  27. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009).
    [CrossRef] [PubMed]
  28. A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B.43(18), 185401 (2010).
    [CrossRef]
  29. A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
    [CrossRef] [PubMed]
  30. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
    [CrossRef]

2012 (1)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

2010 (7)

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B.43(18), 185401 (2010).
[CrossRef]

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

N. F. Yu and F. Capasso, “Wavefront engineering for mid-infrared and terahertz quantum cascade lasers,” J. Opt. Soc. Am. B27(11), B18–B35 (2010).
[CrossRef]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
[CrossRef] [PubMed]

2009 (4)

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express17(16), 13335–13345 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
[CrossRef]

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

2008 (3)

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express16(7), 4487–4493 (2008).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
[CrossRef]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

2007 (4)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

D. Z. Lin, T. D. Cheng, C. K. Chang, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express15(5), 2585–2591 (2007).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

N. Bonod, E. Popov, L. F. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express15(18), 11427–11432 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (1)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Baron, A.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Boltasseva, A.

Bonod, N.

Bozhevolnyi, S. I.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Brongersma, M. L.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Brucoli, G.

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B23(3), 419–422 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Byeon, C. C.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
[CrossRef]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B23(3), 419–422 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Cakmak, A. O.

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

Capasso, F.

Chang, C. K.

Chen, J. J.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Chen, Y. F.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Chen, Y. H.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Cheng, T. D.

Chernov, B.

Choi, S. B.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Colak, E.

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
[CrossRef] [PubMed]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Devaux, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Du, C. L.

Ebbesen, T. W.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Feng, L.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Fu, J. X.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Garcia-Vidal, F. J.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

Genet, C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Ghaemi, T. F.

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gong, Q. H.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Gonzalez, M. U.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Hua, Y. L.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Huang, K. C. Y.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Hugonin, J.-P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Jeong, M. S.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Jeong, Y. K.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Jun, Y. C.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Kang, J. H.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Kim, D. S.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Kim, H.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Krenn, J. R.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Lalanne, P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Lee, B.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Lee, C. K.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, J. F.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Li, L. F.

Li, Z.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

Li, Z. Y.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Lin, D. Z.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Liu, J. M.

Liu, R. J.

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Liu, Y. G.

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Lu, M. H.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Luo, X. G.

Martin-Moreno, L.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Ming, N. B.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Nasalski, W.

A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B.43(18), 185401 (2010).
[CrossRef]

Ni, X.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express17(16), 13335–13345 (2009).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
[CrossRef]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B23(3), 419–422 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

Park, D. J.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Park, Q. H.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Pellerin, K. M.

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Popov, E.

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Rodier, J.-C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Rodrigo, S. G.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Roszkiewicz, A.

A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B.43(18), 185401 (2010).
[CrossRef]

Rousseau, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett.35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express17(16), 13335–13345 (2009).
[CrossRef] [PubMed]

Shi, H. F.

Thio, T.

Thio, T. A.

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Wang, C. T.

Weeber, J. C.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Yeh, C. S.

Yeh, J. T.

Yu, N. F.

Yue, S.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Yun, Y. C.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

Zhou, Y.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Zhu, S. N.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Zhu, Y. Y.

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92(1), 011128 (2008).
[CrossRef]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett.98(5), 051103 (2011).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett.94(6), 063115 (2009).
[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Chin. Phys. B (1)

J. X. Fu, Y. L. Hua, Y. H. Chen, R. J. Liu, J. F. Li, and Z. Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

J. Appl. Phys. (1)

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl. Phys.104(7), 073108 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B. (1)

A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B.43(18), 185401 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. Caglayan, I. Bulu, and E. Ozbay, “Observation of off-axis directional beaming via subwavelength asymmetric metallic gratings,” J. Phys. D Appl. Phys.42(4), 045105 (2009).
[CrossRef]

Nano Lett. (1)

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, T. F. Ghaemi, T. A. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (8)

H. Caglayan, I. Bulu, and E. Ozbay, “Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,” Opt. Express13(5), 1666–1671 (2005).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express18(21), 22283–22298 (2010).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express17(16), 13335–13345 (2009).
[CrossRef] [PubMed]

D. Z. Lin, T. D. Cheng, C. K. Chang, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express15(5), 2585–2591 (2007).
[CrossRef] [PubMed]

Y. G. Liu, H. F. Shi, C. T. Wang, C. L. Du, and X. G. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express16(7), 4487–4493 (2008).
[CrossRef] [PubMed]

N. Bonod, E. Popov, L. F. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express15(18), 11427–11432 (2007).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef]

Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound,” Phys. Rev. Lett.104(16), 164301 (2010).
[CrossRef] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Geometry of Sample A and schematic of the paths of the incident (red arrows) and outgoing (blue arrows) beams that illustrates the expected collimation effect; front-side illumination (upper left plot) and back-side illumination (lower left plot), (b) Schematic of the experimental setup.

Fig. 2
Fig. 2

Maps of electric field intensity (a.u.) for Sample A at front-side (a) and back-side (b) illumination; θ = 5°.

Fig. 3
Fig. 3

Maps of electric field intensity (a.u.) for Sample A at front-side (a) and back-side (b) illumination; θ = −5°.

Fig. 4
Fig. 4

Field distribution maps at f = 14.5 GHz for Sample A at front-side (a) and back-side (b) illumination; θ = 5°.

Fig. 5
Fig. 5

Field distribution maps at f = 14.5 GHz for Sample A at front-side (a) and back-side (b) illumination; θ = −5°.

Fig. 6
Fig. 6

Time-dependent power flow for Sample A calculated at the slit center for (a) the front-side, and (b) the back-side of the structure.

Fig. 7
Fig. 7

Electric field intensity vs Θ at f = 14.5 GHz: (a) for several positive values of θ, simulation; (b) for two values of θ that differ in sign, simulation; (c) same as (b), experiment; (d) same as (b) but for larger |θ|, simulation; front-side (solid lines) and back-side (dashed lines) illuminations.

Fig. 8
Fig. 8

Electric field intensity vs Θ at (a) θ = 5° and (b) θ = 10° for three frequency values, at front-side (solid lines) and back-side (dashed lines) illuminations.

Fig. 9
Fig. 9

Geometry of Sample B and schematic of the paths of the input (red arrows) and outgoing (blue arrows) beams.

Fig. 10
Fig. 10

Map of the transmitted electric field intensity on the (Θ,f)-plane (a) and its distribution over Θ at θ = 0 (b), for Sample B.

Fig. 11
Fig. 11

Geometry of Sample C and schematic of the paths of the input (red arrows) and outgoing (blue arrows) beams; front-side illumination (left plot) and back-side illumination (right plot).

Fig. 12
Fig. 12

Maps of the transmitted electric field intensity for Sample C at front-side (a) and the back-side (b) illumination; θ = 10°.

Fig. 13
Fig. 13

Same as Fig. 12 but for θ = −10°.

Fig. 14
Fig. 14

Transmitted electric field intensity vs Θ for Sample C at (a) f = 9.5 GHz and (b) f = 14.5 GHz; red solid and blue dashed lines represent front-side illumination; black solid and green dashed lines represent back-side illumination.

Tables (1)

Tables Icon

Table 1 Symmetries and one-way collimation regimes for Samples A, B, and C. Signs + and – indicate that the corresponding symmetry or collimation regime exists or does not exist, respectively, for each of the three samples.

Metrics