Abstract

We investigate the spontaneous emission decay rate of Si nanocrystals modified by thin semicontinuous gold films. It has been shown that the mean and standard deviation values of decay rate distribution obtained from the photo-emission decay curve analysis increase due to the deposition of semicontinuous gold films. These values are dependent on gold film thickness and emission wavelength. The observed results are well explained using a point-dipole decay rate model considering the effective dielectric functions of the gold films that exhibit peculiar structures in the localized surface plasmon resonance region.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode,” J. Mod. Opt.45, 661–699 (1998).
    [CrossRef]
  2. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
    [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
    [CrossRef]
  4. S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
    [CrossRef]
  5. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
    [CrossRef] [PubMed]
  6. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
    [CrossRef]
  7. P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express18, 6360–6365 (2010).
    [CrossRef] [PubMed]
  8. A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).
  9. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
    [CrossRef]
  11. E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
    [CrossRef]
  12. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
    [CrossRef] [PubMed]
  13. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
    [CrossRef] [PubMed]
  14. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
    [CrossRef]
  15. T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
    [CrossRef]
  16. S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
    [CrossRef]
  17. C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
    [CrossRef]
  18. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
    [CrossRef]
  19. A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
    [CrossRef]
  20. C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980).
    [CrossRef]
  21. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
    [CrossRef]
  22. Y. Kanemitsu, “Luminescence properties of nanometer-sized Si crystallites: Core and surface states,” Phys. Rev. B49, 16845–16848 (1994).
    [CrossRef]
  23. I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
    [CrossRef]
  24. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
    [CrossRef]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
    [CrossRef]
  26. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
    [CrossRef] [PubMed]
  27. D. W. Lynch and W. R. Hunter, in “Handbook of Optical Constants of Solid,”, E. D. Palik, ed. (Academic Press, 1985).
  28. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento20, 1–76 (1997).
    [CrossRef]
  29. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
    [CrossRef]
  30. T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt.50, 1453–1464 (2011).
    [CrossRef] [PubMed]
  31. T. Okamoto, in “Near-Field Optics and Surface Plasmon Polaritons,”, S. Kawata, ed. (Springer, New York, 2001), p. 98.
  32. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
    [CrossRef] [PubMed]
  33. A. Otto, in “Light Scattering in Solid IV,”, M. Cardona and G. Güntherodt, eds. (Springer, New York, 1984), p. 312.
  34. J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971).
    [CrossRef]
  35. S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
    [CrossRef]
  36. R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys.37, 2775–2781 (1966).
    [CrossRef]
  37. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
    [CrossRef]
  38. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
    [CrossRef]
  39. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
    [CrossRef]
  40. T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007).
    [CrossRef]
  41. K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
    [CrossRef] [PubMed]

2012 (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

2011 (2)

T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt.50, 1453–1464 (2011).
[CrossRef] [PubMed]

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

2010 (6)

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express18, 6360–6365 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

2007 (3)

T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007).
[CrossRef]

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

2006 (6)

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

2002 (1)

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

1997 (1)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento20, 1–76 (1997).
[CrossRef]

1996 (1)

I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
[CrossRef]

1994 (1)

Y. Kanemitsu, “Luminescence properties of nanometer-sized Si crystallites: Core and surface states,” Phys. Rev. B49, 16845–16848 (1994).
[CrossRef]

1993 (2)

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
[CrossRef]

1987 (1)

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

1984 (2)

S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
[CrossRef]

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

1980 (1)

C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

1971 (1)

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971).
[CrossRef]

1966 (1)

R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys.37, 2775–2781 (1966).
[CrossRef]

Achermann, M.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

Adachi, S.

T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007).
[CrossRef]

Allan, G.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
[CrossRef]

Amotchkina, T. V.

Atwater, H. A.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

Auria, S. D.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Aussenegg, F. R.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

Bendikov, T. A.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Birowosuto, M. D.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

Biteen, J. S.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

Brunner, H.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Cao, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Carminati, R.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Chen, Y.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Chuntonov, L.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

Delerue, C.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
[CrossRef]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Doremus, R. H.

R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys.37, 2775–2781 (1966).
[CrossRef]

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Fang, J.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Ferrell, T. L.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Fujii, M.

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

Garoff, S.

S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
[CrossRef]

Genov, D. A.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Gersen, H.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Gersten, J. I.

S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
[CrossRef]

Ginger, D. S.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Goudonnet, J. P.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Guillois, O.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

Haran, G.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Hayashi, S.

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[CrossRef]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Huisken, F.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, in “Handbook of Optical Constants of Solid,”, E. D. Palik, ed. (Academic Press, 1985).

Imakita, K.

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

Inui, M.

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

Janicki, V.

Johansen, J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

Kalkman, J.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, “Luminescence properties of nanometer-sized Si crystallites: Core and surface states,” Phys. Rev. B49, 16845–16848 (1994).
[CrossRef]

Karakouz, T.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Kettelarij, A. J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

Kuipers, L.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Kulkarni, A. P.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Kümmerlen, J.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
[CrossRef]

Lannoo, M.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
[CrossRef]

Ledoux, G.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

Leistikow, M. D.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

Leitner, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Lemon, J. R.

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971).
[CrossRef]

Lewis, N. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

Lindsey, C. P.

C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980).
[CrossRef]

Lodahl, P.

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Lykke, A. M.

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

Lynch, D. W.

D. W. Lynch and W. R. Hunter, in “Handbook of Optical Constants of Solid,”, E. D. Palik, ed. (Academic Press, 1985).

Malicka, J.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Marton, J. P.

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971).
[CrossRef]

Mertens, H.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Mihalcescu, I.

I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
[CrossRef]

Miura, S.

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

Mosk, A. P.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

Munechika, K.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Munro, A. M.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Nabatova-Gabain, N.

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

Nakamura, T.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

Nikolaev, I. S.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Noh, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[CrossRef]

Okamoto, T.

T. Okamoto, in “Near-Field Optics and Surface Plasmon Polaritons,”, S. Kawata, ed. (Springer, New York, 2001), p. 98.

Otto, A.

A. Otto, in “Light Scattering in Solid IV,”, M. Cardona and G. Güntherodt, eds. (Springer, New York, 1984), p. 312.

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

Patterson, G. D.

C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980).
[CrossRef]

Pavesi, L.

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento20, 1–76 (1997).
[CrossRef]

Plante, I. J.-L.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Polman, A.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Rebane, A. A.

Renn, A.

Reynaud, C.

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

Romestain, R.

I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
[CrossRef]

Royer, P.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

Rubinstein, I.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Ruijgrok, P. V.

Sancho-Parramon, J.

Sandoghdar, V.

Sarychev, A. K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Seal, K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Skipetrov, S. E.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

Sondberg, S. A.

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

Stobbe, S.

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

Takeda, E.

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

Tamura, T.

T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007).
[CrossRef]

Terai, A.

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

Tesler, A. B.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Tikhonravov, A. V.

Tillack, A. F.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

Tomita, S.

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

Trubetskov, M. K.

Tuominen, M. T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

van Driel, A. F.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Vanmaekelbergh, D.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Vaskevich, A.

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Vergeer, P.

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Vial, J. C.

I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
[CrossRef]

Vos, W. L.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Wang, Y.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

Warmack, R. J.

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Weitz, D. A.

S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
[CrossRef]

Wokaun, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Wüest, R.

Yang, T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

Ying, Z. C.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Zhang, X.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Zorc, H.

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, Y. Shen, S. D. Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering: 2. effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.277, 261–277 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Takeda, T. Nakamura, M. Fujii, S. Miura, and S. Hayashi, “Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals,” Appl. Phys. Lett.89, 101907 (2006).
[CrossRef]

J. Appl. Phys. (2)

I. Mihalcescu, J. C. Vial, and R. Romestain, “Carrier localization in porous silicon investigated by time-resolved luminescence analysis,” J. Appl. Phys.80, 2404–2411 (1996).
[CrossRef]

R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys.37, 2775–2781 (1966).
[CrossRef]

J. Chem. Phys. (2)

C. P. Lindsey and G. D. Patterson, “Detailed comparison of the williams–watts and cole–davidson functions,” J. Chem. Phys.73, 3348–3357 (1980).
[CrossRef]

S. Garoff, D. A. Weitz, and J. I. Gersten, “Electrodynamics at rough metal surfaces: Photochemistry and luminescence of adsorbates near metal]island films,” J. Chem. Phys.81, 5189–5200 (1984).
[CrossRef]

J. Electrochem. Soc. (1)

T. Tamura and S. Adachi, “Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution,” J. Electrochem. Soc.154, H681–H686 (2007).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

J. Phys. Chem. C (1)

A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich, and I. Rubinstein, “Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films,” J. Phys. Chem. C115, 24642–24652 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Tomita, M. Fujii, S. Hayashi, A. Terai, and N. Nabatova-Gabain, “Spectroscopic ellipsometry of yttrium-iron garnet thin films containing gold nanoparticles,” Jpn. J. Appl. Phys.46, L1032–L1034 (2007).
[CrossRef]

Mol. Phys. (1)

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80, 1031–1046 (1993).
[CrossRef]

Nano Lett. (3)

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J.-L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett.10, 2598–2603 (2010).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5, 1768–1773 (2005).
[CrossRef] [PubMed]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2006).
[CrossRef] [PubMed]

Nat. Phys. (1)

A. M. Lykke, S. Stobbe, S. A. Sondberg, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys.7, 215–218 (2010).

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Phys. Rev. B (11)

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B48, 11024–11036 (1993).
[CrossRef]

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79, 045301 (2009).
[CrossRef]

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. theory,” Phys. Rev. B4, 271–280 (1971).
[CrossRef]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007).
[CrossRef]

Y. Kanemitsu, “Luminescence properties of nanometer-sized Si crystallites: Core and surface states,” Phys. Rev. B49, 16845–16848 (1994).
[CrossRef]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

T. Nakamura, M. Fujii, K. Imakita, and S. Hayashi, “Modification of energy transfer from Si nanocrystals to Er3+ near a au thin film,” Phys. Rev. B72, 235412 (2005).
[CrossRef]

S. Miura, T. Nakamura, M. Fujii, M. Inui, and S. Hayashi, “Size dependence of photoluminescence quantum efficiency of Si nanocrystals,” Phys. Rev. B73, 245333 (2006).
[CrossRef]

C. Delerue, G. Allan, C. Reynaud, O. Guillois, G. Ledoux, and F. Huisken, “Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals,” Phys. Rev. B73, 235318 (2006).
[CrossRef]

P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B35, 3753–3759 (1987).
[CrossRef]

Phys. Rev. Lett. (4)

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett.105, 013904 (2010).
[CrossRef] [PubMed]

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett.97, 206103 (2006).
[CrossRef] [PubMed]

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102, 163001 (2009).
[CrossRef] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901 (2010).
[CrossRef]

Riv. Nuovo Cimento (1)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento20, 1–76 (1997).
[CrossRef]

Other (5)

T. Okamoto, in “Near-Field Optics and Surface Plasmon Polaritons,”, S. Kawata, ed. (Springer, New York, 2001), p. 98.

A. Otto, in “Light Scattering in Solid IV,”, M. Cardona and G. Güntherodt, eds. (Springer, New York, 1984), p. 312.

D. W. Lynch and W. R. Hunter, in “Handbook of Optical Constants of Solid,”, E. D. Palik, ed. (Academic Press, 1985).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of Au layer of thickness d = 5.0 nm. (b) Absorbance spectra of Au layers with various thicknesses. (c) Photo-emission spectra of PSi/Au samples. The thicknesses of Au are d = 1.0, 2.5, and 5.0 nm. The spectra are normalized by the PL peak intensity of the PSi sample.

Fig. 2
Fig. 2

(a) Photo-emission decay curves of PSi and PSi/Au at λ = 660 nm (symbols). The thicknesses of Au are 1.0 and 2.5 nm. Solid and dashed curves represent the fitted results obtained using the lognormal-distribution decay and stretched-exponential decay models, respectively. Fitted parameters for PSi, PSi/Au (1.0 nm), and PSi/Au (2.5 nm) are wst = 22, 7.2 and 4.6 μs−1, β = 0.92, 0.85, and 0.81, wmf = 0.042, 0.12 and 0.19 μs−1, and wd = 0.094, 0.40, and 0.71μs−1. (b) Decay rate distributions of PSi and PSi/Au samples obtained from the lognormal-distribution decay model.

Fig. 3
Fig. 3

(a) wmean of PSi/Au (d = 1.0, 2.5 and 5.0 nm) as a function of emission wavelength (symbols). wmean of PSi/Au is normalized by that of the PSi sample. Solid curves represent the calculated decay rates. Inset shows the estimated wr (solid squares), wnr (solid circles), and q (open squares) as a function of the emission wavelength. Radiative rates of PSi reported in Ref. 28 are also plotted (crosses). (b) Schematic illustration of sample used for the decay rate calculation. The calculations are performed for the five layers, substrate (Si), emission layer (PSi), native oxide layer (SiO2), metal layer (Au), and ambient (air). (c) Dielectric functions (εRe and εIm) of Au layers (d = 1.0, 2.5, and 5.0 nm) as determined from SE measurements.

Fig. 4
Fig. 4

Standard deviations σ(PSi) of PSi sample (open symbols) and σ(PSi/Au) of PSi/Au samples (closed symbols) as a function of the emission wavelength. Solid curves represent the calculation results of σ(PSi/Au), which is given as the sum of σ(PSi) and σ(Au). The corresponding σ(Au) values are presented in the inset, as a function of the wavelength.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 0 ρ ( w ) exp ( w t ) d w ,
ρ ( w ) = A exp [ { ln ( w / w m f ) / sinh 1 ( w d / 2 w m f ) } 2 ] .
w t = w r γ m + w n r ,
w mean = w m f exp ( 3 / 4 [ sinh 1 ( w d / 2 w m f ) ] 2 ) .
γ ^ = 1 q + q 2 0 [ G ( u ) u l + F ( u ) u 3 l ] d u ,
F ( u ) = [ 1 R low | | e 2 l s ^ low ] [ 1 R up | | e 2 l s ^ up ] 1 R up | | R low | | e 2 l ( s ^ low + s ^ up ) ,
G ( u ) = [ 1 + R low e 2 l s ^ low ] [ 1 + R up e 2 l s ^ up ] 1 R up R low e 2 l ( s ^ up + s ^ low ) + ( 1 u 2 ) [ 1 + R low | | e 2 l s ^ low ] [ 1 + R up | | e 2 l s ^ up ] 1 R up | | R low | | e 2 l ( s ^ up + s ^ low ) ,
γ = 1 a 0 a γ ^ ( s ) d s ,
w var = w mean 2 [ exp ( 1 / 2 [ sinh 1 ( w d / 2 w m f ) ] 2 ) 1 ] .
σ = w var / w mean .

Metrics