Abstract

We propose a novel fiber design optimized for short-reach interconnects in consumer applications. A detailed analysis of the optical and mechanical properties of this fiber design is presented. Results are presented demonstrating (i) low bend loss and enhanced mechanical reliability in bends as small as 3 mm diameter; (ii) high power budget margin to enable relaxed mechanical tolerances on transmitter, receiver, and expanded-beam connectors for low-cost connectivity; and (iii) high bandwidth capability and system testing results at 10 Gb/s.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Wagner, J. R. Igel, R. Whitman, M. D. Vaughn, A. B. Ruffin, and S. Bickharn, “Fiber-based broadband-access deployment in the United States,” J. Lightwave Technol.24(12), 4526–4540 (2006).
    [CrossRef]
  2. S. Ten, “In home networking using optical fiber,” (Optical Society of America, 2012), NTh1D.4.
  3. D. Z. Chen, W. R. Belben, J. B. Gallup, C. Mazzali, P. Dainese, and T. Rhyne, “Requirements for Bend Insensitive Fibers for Verizon's FiOS and FTTH Applications,” (Optical Society of America, 2008), p. NTuC2.
  4. M. J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low Bending Loss Single-Mode Fiber for FTTH,” J. Lightwave Technol.27(3), 376–382 (2009).
    [CrossRef]
  5. M. J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, K. A. Wilbert, J. S. Abbott, and D. A. Nolan, “Designs of bend-insensitive multimode fibers,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference (2011), 1–3.
  6. O. Kogan, S. R. Bickham, M.-J. Li, P. Tandon, J. S. Abbott, and S. A. Garner, “Design and Characterization of Bend-Insensitive Multimode Fiber,” in 60th International Wire & Cable Symposium (IWCS) Conference (Charlotte Convention Center, Charlotte, North Carolina, USA 2011), 154–159.
  7. B. Dunstan, “USB 3.0 Architecture Overview,” in SuperSpeed USB Developers Conference(2011).
  8. Intel Corporation, “Thunderbolt Technology - Technology Brief,” (2012), http://www.intel.com/content/dam/doc/technology-brief/thunderbolt-technology-brief.pdf .
  9. J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
    [CrossRef]
  10. T. Kibler, S. Poferl, G. Böck, H.-P. Huber, and E. Zeeb, “Optical Data Buses for Automotive Applications,” J. Lightwave Technol.22(9), 2184–2199 (2004).
    [CrossRef]
  11. J. C. Baker and D. N. Payne, “Expanded-beam connector design study,” Appl. Opt.20(16), 2861–2867 (1981).
    [CrossRef] [PubMed]
  12. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
    [CrossRef]
  13. B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Materials (Cambridge University Press, 1975).
  14. S. T. Gulati, “Crack kinetics during static and dynamic loading,” J. Non-Cryst. Solids38–39, 475–480 (1980).
    [CrossRef]
  15. R. J. Charles, “Static fatigue of glass: I, II,” J. Appl. Phys.29(12), 1657–1662 (1958).
    [CrossRef]
  16. A. G. Evans and S. M. Wiederhorn, “Proof testing of ceramic materials. An analytical basis for failure predictions,” Int. J. Fract.10(3), 379–392 (1974).
    [CrossRef]
  17. G. S. Glaesemann, S. T. Gulati, and J. D. Helfinstine, “Effect of strain and surface composition on Young's modulus of optical fibers,” (Optical Society of America, 1988), TuG5.
  18. G. S. Glaesemann, and S. T. Gulati, “Dynamic fatigue data for fatigue resistant fiber in tension vs bending,” (Optical Society of America, 1989), WA3.
  19. R. Sugizaki, H. Inaba, K. Fuse, T. Nishimoto, and T. Yagi, “Small Diameter Fibers for Optical Interconnection and Their Reliability,” in Proceedings of the 57th International Wire & Cable Symposium(2008), 377–381.
  20. M. Ohmura and K. Saito, “High-Density Optical Wiring Technologies for Optical Backplane Interconnection Using Downsized Fibers and Pre-Installed Fiber Type Multi Optical Connectors,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), OWI71.
  21. I. E. C. (IEC), “Optical fibres – Part 1-49: Measurement methods and test procedures – Differential Mode Delay”, IEC 60793–1-49:2006,” (2006).

2009

2006

2004

2003

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

1986

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
[CrossRef]

1981

1980

S. T. Gulati, “Crack kinetics during static and dynamic loading,” J. Non-Cryst. Solids38–39, 475–480 (1980).
[CrossRef]

1974

A. G. Evans and S. M. Wiederhorn, “Proof testing of ceramic materials. An analytical basis for failure predictions,” Int. J. Fract.10(3), 379–392 (1974).
[CrossRef]

1958

R. J. Charles, “Static fatigue of glass: I, II,” J. Appl. Phys.29(12), 1657–1662 (1958).
[CrossRef]

Baker, J. C.

Bickham, S. R.

Bickharn, S.

Böck, G.

Bookbinder, D. C.

Charles, R. J.

R. J. Charles, “Static fatigue of glass: I, II,” J. Appl. Phys.29(12), 1657–1662 (1958).
[CrossRef]

Desorcie, R. B.

Englebert, J. J.

Evans, A. G.

A. G. Evans and S. M. Wiederhorn, “Proof testing of ceramic materials. An analytical basis for failure predictions,” Int. J. Fract.10(3), 379–392 (1974).
[CrossRef]

Gulati, S. T.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
[CrossRef]

S. T. Gulati, “Crack kinetics during static and dynamic loading,” J. Non-Cryst. Solids38–39, 475–480 (1980).
[CrossRef]

Hogan, W. K.

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

Huber, H.-P.

Igel, J. R.

Johnson, G. W.

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

Johnson, J. J.

Karst, D. L.

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

Kibler, T.

Kurkjian, C. R.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
[CrossRef]

Lewis, K. A.

Li, M. J.

Matthewson, M. J.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
[CrossRef]

McDermott, M. A.

Nolan, D. A.

Payne, D. N.

Poferl, S.

Ruffin, A. B.

Tandon, P.

Trewhella, J. M.

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

Vaughn, M. D.

Wagner, R. E.

Whitman, R.

Wiederhorn, S. M.

A. G. Evans and S. M. Wiederhorn, “Proof testing of ceramic materials. An analytical basis for failure predictions,” Int. J. Fract.10(3), 379–392 (1974).
[CrossRef]

Zeeb, E.

Appl. Opt.

IBM J. Res. Develop.

J. M. Trewhella, G. W. Johnson, W. K. Hogan, and D. L. Karst, “Evolution of optical subassemblies in IBM data communication transceivers,” IBM J. Res. Develop.47(2.3), 251–258 (2003).
[CrossRef]

Int. J. Fract.

A. G. Evans and S. M. Wiederhorn, “Proof testing of ceramic materials. An analytical basis for failure predictions,” Int. J. Fract.10(3), 379–392 (1974).
[CrossRef]

J. Am. Ceram. Soc.

M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of Optical Fibers by Bending,” J. Am. Ceram. Soc.69(11), 815–821 (1986).
[CrossRef]

J. Appl. Phys.

R. J. Charles, “Static fatigue of glass: I, II,” J. Appl. Phys.29(12), 1657–1662 (1958).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

S. T. Gulati, “Crack kinetics during static and dynamic loading,” J. Non-Cryst. Solids38–39, 475–480 (1980).
[CrossRef]

Other

G. S. Glaesemann, S. T. Gulati, and J. D. Helfinstine, “Effect of strain and surface composition on Young's modulus of optical fibers,” (Optical Society of America, 1988), TuG5.

G. S. Glaesemann, and S. T. Gulati, “Dynamic fatigue data for fatigue resistant fiber in tension vs bending,” (Optical Society of America, 1989), WA3.

R. Sugizaki, H. Inaba, K. Fuse, T. Nishimoto, and T. Yagi, “Small Diameter Fibers for Optical Interconnection and Their Reliability,” in Proceedings of the 57th International Wire & Cable Symposium(2008), 377–381.

M. Ohmura and K. Saito, “High-Density Optical Wiring Technologies for Optical Backplane Interconnection Using Downsized Fibers and Pre-Installed Fiber Type Multi Optical Connectors,” in Optical Fiber Communication Conference (OFC)(Optical Society of America, 2006), OWI71.

I. E. C. (IEC), “Optical fibres – Part 1-49: Measurement methods and test procedures – Differential Mode Delay”, IEC 60793–1-49:2006,” (2006).

B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Materials (Cambridge University Press, 1975).

S. Ten, “In home networking using optical fiber,” (Optical Society of America, 2012), NTh1D.4.

D. Z. Chen, W. R. Belben, J. B. Gallup, C. Mazzali, P. Dainese, and T. Rhyne, “Requirements for Bend Insensitive Fibers for Verizon's FiOS and FTTH Applications,” (Optical Society of America, 2008), p. NTuC2.

M. J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, K. A. Wilbert, J. S. Abbott, and D. A. Nolan, “Designs of bend-insensitive multimode fibers,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference (2011), 1–3.

O. Kogan, S. R. Bickham, M.-J. Li, P. Tandon, J. S. Abbott, and S. A. Garner, “Design and Characterization of Bend-Insensitive Multimode Fiber,” in 60th International Wire & Cable Symposium (IWCS) Conference (Charlotte Convention Center, Charlotte, North Carolina, USA 2011), 154–159.

B. Dunstan, “USB 3.0 Architecture Overview,” in SuperSpeed USB Developers Conference(2011).

Intel Corporation, “Thunderbolt Technology - Technology Brief,” (2012), http://www.intel.com/content/dam/doc/technology-brief/thunderbolt-technology-brief.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Data rate evolutions of various protocols commonly used in “backbone” home-networks (closed symbols) and for device-to-device direct communication (open symbols). The lines represent exponential fitting.

Fig. 2
Fig. 2

Schematic of the link evaluated in this paper with a transmitter and a receiver employing a photonic turn element, and two in-line expanded-beam connectors;

Fig. 3
Fig. 3

(a) Radiant intensity profile of two different VCSELs from different manufacturers based on far-field measurements. (b) image of the Photodiode with circular 60 μm active area diameter;

Fig. 4
Fig. 4

Comparison of simulation and experimental data of the coupling efficiency sensitivity to lateral offset: (a) transmitter side and (b) receiver side. Coupling efficiency has been normalized to its value at 0 μm offset. In (a) coupling efficiency is measured (or calculated) considering only the optical path from VCSEL passing through the photonic turn element and into the fiber. Fibers with various core diameters have been fabricated for these measurements. Similarly, in (b) the efficiency represents the optical path on the receiver side from fiber to photonic turn element to photodiode;

Fig. 5
Fig. 5

(a) Experimental set up used to measure the encircled flux as a function of VCSEL lateral off-set. The VCSEL is mounted on a micro-positioning stage and off-set from 0 µm to 20 µm is introduced (along x or y axis). At the output of the fiber, we use free-space optics to project the image of the fiber end onto a CCD camera and captured the intensity distribution (as shown in the inset). From the intensity profile we measure the encircled flux curve, which gives the fraction of the total power within a circle with radius ranging from zero up to the fiber core boundary. The experimental results in (b) are measured (symbols) and simulated (lines) for a fiber with 80 µm core diameter and 0.29 numerical aperture; the values in the legend indicate the VCSEL off-set;

Fig. 6
Fig. 6

(a) Simulated optical link loss under misaligned conditions as a function of fiber core diameter and numerical aperture using the set of in-plane misalignments shown in Table 1. The color scale indicates the total loss in dB; (b) Results of a 30,000-run Monte Carlo simulation of the total link loss. The results are plotted as cumulative probability that the link loss is higher than the value in the abscissa. All loss values are inclusive of the reflection losses.

Fig. 7
Fig. 7

(a) Strength distribution measured at 35°C and 90% relative humidity using a 2PB configuration for a fiber with 100 µm glass diameter and an enhanced coating; (b) solid lines represent lifetime predictions under 2PB deployment configuration using Eqs. (1) and (2) above from Power Law Theory (PLT) for a fiber with reduced 100 µm glass diameter and a fiber with 125 µm diameter. The points represent direct lifetime measurements under static 2PB deployment at 35C and 90% RH for the 100 µm diameter fiber; Inset: schematic of the Two-Point Bend deployment in which a fiber is held under bend by two parallel plates. The bend diameter is the center-to-center distance of the fiber ends as indicated in the inset of (a);

Fig. 8
Fig. 8

(a) schematic of the refractive index profiles and (b) respective measured bend loss for three profile designs. Design A represents a regular 50 µm core diameter with parabolic profile and 1% delta, design B adds low index trench in the cladding and in design C we further increase the core to 80 µm and delta to ~2% while still maintaining the low index trench. The launch condition for these measurements is based on IEC 61280-4-1 (Table E.4);

Fig. 9
Fig. 9

Differential mode delay of a fiber with the profile design C shown in Fig. 8(a). The calculated effective modal bandwidth is 1477, 1533, 1649, and 1580 MHz·km for the launch conditions in Fig. 5(b) corresponding to 0, 10, 15 and 20 µm off-sets respectively;

Fig. 10
Fig. 10

(a) Experimental set-up used to evaluate the system performance, back to back measurements were taken by removing the fiber under test; (b) BER measurements of 50 meters of a fiber with bandwidth of 682 MHz·km, showing a power penalty of ~0.3 dB; (c) Power penalty measured for various links with different bandwidths;

Tables (1)

Tables Icon

Table 1 Tolerance values used to simulate coupling efficiency.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t f =[ σ f n+1 ( n+1 ) σ ˙ ] 1 σ a n ,
σ a =1.2 E 0 d D ( 1+3.6 d D ),

Metrics