Abstract

Recently distributed Raman amplification of the upstream signal has been proposed to improve the loss budget for gigabit passive optical networks (GPON), and systems of 60-km reach and up to 128 way split have been demonstrated employing state-of-the-art fibers. However, a deployed fiber plant may not perform as well due to elevated fiber attenuation, splice losses, and back-reflections that are present in a realistic GPON system. In this paper, their effects on the Raman amplified 1310-nm upstream signal in a GPON reach extension system is investigated numerically. Using the parameters of a deployed fiber, a design solution is provided for a purely passive, Raman amplified GPON reach extender. Results show that 55-km logical reach and 1:32 split ratio can be achieved using a realistic fiber plant and class B + transceivers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S.-H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol.27(3), 273–291 (2009).
    [CrossRef]
  2. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5.
  3. ITU-T Series Recommendation G. 984.1, 2008.
  4. ITU-T Series Recommendation G. 984.2, amendment 1, 2006.
  5. K. L. Lee, J. L. Riding, A. V. Tran, and R. S. Tucker, “Extended-reach gigabit passive optical network for rural areas using distributed Raman amplifier,” in Proceedings of OFC 2009, paper NME3.
  6. D. Nesset and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” in Proceedings of OFC 2010, paper OThW6.
  7. B. Zhu and D. Nesset, “GPON reach extension to 60 km with entirely passive fibre plant using Raman amplification,” in Proceedings of ECOC 2009, paper 8.5.5.
  8. B. Zhu, “Entirely passive reach extended GPON using Raman amplification,” Opt. Express18(22), 23428–23434 (2010).
    [CrossRef] [PubMed]
  9. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol.22(1), 79–93 (2004).
    [CrossRef]
  10. P. J. Winzer, R.-J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise,” in Proceedings of OFC 2002, paper ThGG87.
  11. M. H. Eiselt, “Distributed Raman amplification on fiber with large connector losses,” in Proceedings of OFC 2006, paper OWI31.
  12. M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
    [CrossRef]
  13. V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett.14(8), 1199–1201 (2002).
    [CrossRef]
  14. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
    [CrossRef]
  15. F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
    [CrossRef]
  16. A. Antonino, V. De Feo, J. M. Finochietto, R. Gaudino, A. La Porta, M. Petracca, and F. Neri, “Toward feasible all-optical packet networks: recent results on the WONDER experimental testbed,” in Proceedings of OFC 2008, paper JWA86.
  17. J. A. Nagel, “Statistical analysis of single-mode fiber field splice losses,” in Proceedings of OFC 2009, paper JWA3.
  18. Y. Ando, “Statistical analysis of insertion-loss improvement for optical connectors using the orientation method for fiber-core offset,” IEEE Photon. Technol. Lett.3(10), 939–941 (1991).
    [CrossRef]
  19. http://www.thefoa.org/tech/ref/testing/test/reflectance.html .

2010 (1)

2009 (1)

2004 (1)

2002 (1)

V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett.14(8), 1199–1201 (2002).
[CrossRef]

2001 (1)

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

1999 (2)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
[CrossRef]

1991 (1)

Y. Ando, “Statistical analysis of insertion-loss improvement for optical connectors using the orientation method for fiber-core offset,” IEEE Photon. Technol. Lett.3(10), 939–941 (1991).
[CrossRef]

Achtenhagen, M.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

Ando, Y.

Y. Ando, “Statistical analysis of insertion-loss improvement for optical connectors using the orientation method for fiber-core offset,” IEEE Photon. Technol. Lett.3(10), 939–941 (1991).
[CrossRef]

Appathurai, S.

Bromage, J.

Chang, T. G.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

Davey, R. P.

Grossman, D. B.

Hardy, A.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

Kelly, A. E.

Kidorf, H. D.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

Liu, F.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
[CrossRef]

Ma, M. X.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

Nesset, D.

Nissov, M.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

Nyman, B.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

Payne, D. B.

Pedersen, R. J. S.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
[CrossRef]

Perlin, V. E.

V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett.14(8), 1199–1201 (2002).
[CrossRef]

Rafel, A.

Rasmussen, C. J.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
[CrossRef]

Rasztovits-Wiech, M.

Rottwitt, K.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

Winful, H. G.

V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett.14(8), 1199–1201 (2002).
[CrossRef]

Yang, S.-H.

Zhu, B.

Appl. Phys. Lett. (1)

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett.78(10), 1322–1324 (2001).
[CrossRef]

Electron. Lett. (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett.35(12), 997–998 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett.11(1), 137–139 (1999).
[CrossRef]

V. E. Perlin and H. G. Winful, “Optimizing the noise performance of broad-band WDM systems with distributed Raman amplification,” IEEE Photon. Technol. Lett.14(8), 1199–1201 (2002).
[CrossRef]

Y. Ando, “Statistical analysis of insertion-loss improvement for optical connectors using the orientation method for fiber-core offset,” IEEE Photon. Technol. Lett.3(10), 939–941 (1991).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (11)

http://www.thefoa.org/tech/ref/testing/test/reflectance.html .

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5.

ITU-T Series Recommendation G. 984.1, 2008.

ITU-T Series Recommendation G. 984.2, amendment 1, 2006.

K. L. Lee, J. L. Riding, A. V. Tran, and R. S. Tucker, “Extended-reach gigabit passive optical network for rural areas using distributed Raman amplifier,” in Proceedings of OFC 2009, paper NME3.

D. Nesset and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” in Proceedings of OFC 2010, paper OThW6.

B. Zhu and D. Nesset, “GPON reach extension to 60 km with entirely passive fibre plant using Raman amplification,” in Proceedings of ECOC 2009, paper 8.5.5.

P. J. Winzer, R.-J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise,” in Proceedings of OFC 2002, paper ThGG87.

M. H. Eiselt, “Distributed Raman amplification on fiber with large connector losses,” in Proceedings of OFC 2006, paper OWI31.

A. Antonino, V. De Feo, J. M. Finochietto, R. Gaudino, A. La Porta, M. Petracca, and F. Neri, “Toward feasible all-optical packet networks: recent results on the WONDER experimental testbed,” in Proceedings of OFC 2008, paper JWA86.

J. A. Nagel, “Statistical analysis of single-mode fiber field splice losses,” in Proceedings of OFC 2009, paper JWA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A Raman amplified GPON reach extension system.

Fig. 2
Fig. 2

(a) OSNRs of the 1310-nm signal vs. the 1240-nm pump power. (b) 1310-nm signal power at the exit of the feeder fiber and the Raman on-off gain.

Fig. 3
Fig. 3

(a) OSNRs of the 1310-nm signal for various attenuation coefficients. (b) Raman on-off gain for various attenuation coefficients at 1310 nm.

Fig. 4
Fig. 4

OSNRs of the 1310-nm signal. The fiber attenuation coefficient is 0.35 dB/km at 1310 nm. Both the splice loss and segment length are varied.

Fig. 5
Fig. 5

OSNRs of the 1310-nm signal when splice return losses are taken into account.

Fig. 6
Fig. 6

OSNRs of the 1310-nm signal vs. its input power to the feeder fiber.

Tables (1)

Tables Icon

Table 1 Link loss budget

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d dz P ± (z, ν i )=α( ν i ) P ± (z, ν i )±γ( ν i ) P (z, ν i ) ± m=1 i1 C R ( ν m ν i )[ P ± (z, ν m )+ P (z, ν m ) ]{ P ± (z, ν i )+2h ν i [ 1+ 1 e h( ν m ν i )/KT 1 ]Δν } m=i+1 n ν i ν m C R ( ν i ν m ) P ± (z, ν i )[ P ± (z, ν m )+ P (z, ν m ) ] ± m=i+1 n ν i ν m C R ( ν i ν m )[ 2h ν i ( 1 e h( ν i ν m )/KT 1 )Δν ][ P ± (z, ν m )+ P (z, ν m ) ] n=1 L/Lsp α sp P ± (z, ν i )δ(zn L sp ) ± n=1 L/Lsp α r P (z, ν i )δ(zn L sp )

Metrics