Abstract

Multi-transmitter aperture synthesis increases the effective aperture in coherent imaging by shifting the backscattered speckle field across a physical aperture or set of apertures. Through proper arrangement of the transmitter locations, it is possible to obtain speckle fields with overlapping regions, which allows fast computation of optical aberrations from wavefront differences. In this paper, we present a method where Zernike polynomials are used to model the aberrations and high-order aberrations are estimated without the need to do phase unwrapping of the difference fronts.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Lucky imaging and aperture synthesis with low-redundancy apertures

Jennifer E. Ward, William T. Rhodes, and John T. Sheridan
Appl. Opt. 48(1) A63-A70 (2009)

Atmospheric turbulence correction using digital holographic detection: experimental results

Joseph C. Marron, Richard L. Kendrick, Nathan Seldomridge, Taylor D. Grow, and Thomas A. Höft
Opt. Express 17(14) 11638-11651 (2009)

Distributed aperture synthesis

David Rabb, Douglas Jameson, Andrew Stokes, and Jason Stafford
Opt. Express 18(10) 10334-10342 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Miller, M. P. Dierking, and B. D. Duncan, “Optical sparse aperture imaging,” Appl. Opt. 46(23), 5933–5943 (2007).
    [Crossref] [PubMed]
  2. D. Rabb, D. Jameson, A. Stokes, and J. Stafford, “Distributed aperture synthesis,” Opt. Express 18(10), 10334–10342 (2010).
    [Crossref] [PubMed]
  3. B. K. Gunturk, N. J. Miller, and E. A. Watson, “Camera phasing in multi-aperture cohering imaging,” Opt. Express 20(11), 11796–11805 (2012).
    [Crossref] [PubMed]
  4. D. J. Rabb, D. F. Jameson, J. W. Stafford, and A. J. Stokes, “Multi-transmitter aperture synthesis,” Opt. Express 18(24), 24937–24945 (2010).
    [Crossref] [PubMed]
  5. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [Crossref]
  6. R. G. Paxman and J. C. Marron, “Aberration correction of speckled imagery with an image sharpness criterion,” in Statistical Optics, Proc. SPIE  976, 37–47 (1988).
  7. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [Crossref]
  8. S. T. Thurman and J. R. Fienup, “Phase-error correction in digital holography,” J. Opt. Soc. Am. A 25(4), 983–994 (2008).
    [Crossref]
  9. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [Crossref]
  10. D. Rabb, J. W. Stafford, and D. F. Jameson, “Non-iterative aberration correction of a multiple transmitter system,” Opt. Express 19(25), 25048–25056 (2011).
    [Crossref]
  11. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14(1), 142–150 (1975).
    [PubMed]
  12. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35(31), 6162–6172 (1996).
    [Crossref] [PubMed]
  13. S. Okuda, T. Nomura, K. Kamiya, and H. Miyashiro, “High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials,” Appl. Opt. 39(28), 5179–5186 (2000).
    [Crossref]
  14. F. Dai, F. Tang, X. Wang, P. Feng, and O. Sasaki, “Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms,” Opt. Express 20(2), 1530–1544 (2012).
    [Crossref] [PubMed]
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  16. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).
  17. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007).
  18. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2010).

2012 (2)

2011 (1)

2010 (2)

2008 (1)

2007 (1)

2003 (1)

2000 (1)

1996 (1)

1988 (1)

R. G. Paxman and J. C. Marron, “Aberration correction of speckled imagery with an image sharpness criterion,” in Statistical Optics, Proc. SPIE  976, 37–47 (1988).

1976 (1)

1975 (1)

1974 (1)

Buffington, A.

Dai, F.

Dierking, M. P.

Duncan, B. D.

Feng, P.

Fienup, J. R.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007).

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2010).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

Gunturk, B. K.

Harbers, G.

Jameson, D.

Jameson, D. F.

Kamiya, K.

Kunst, P. J.

Leibbrandt, G. W. R.

Marron, J. C.

R. G. Paxman and J. C. Marron, “Aberration correction of speckled imagery with an image sharpness criterion,” in Statistical Optics, Proc. SPIE  976, 37–47 (1988).

Miller, J. J.

Miller, N. J.

Miyashiro, H.

Muller, R. A.

Noll, R. J.

Nomura, T.

Okuda, S.

Paxman, R. G.

R. G. Paxman and J. C. Marron, “Aberration correction of speckled imagery with an image sharpness criterion,” in Statistical Optics, Proc. SPIE  976, 37–47 (1988).

Rabb, D.

Rabb, D. J.

Rimmer, M. P.

Sasaki, O.

Schmidt, J. D.

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).

Stafford, J.

Stafford, J. W.

Stokes, A.

Stokes, A. J.

Tang, F.

Thurman, S. T.

Wang, X.

Watson, E. A.

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007).

Wyant, J. C.

Appl. Opt. (4)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Opt. Express (5)

Statistical Optics (1)

R. G. Paxman and J. C. Marron, “Aberration correction of speckled imagery with an image sharpness criterion,” in Statistical Optics, Proc. SPIE  976, 37–47 (1988).

Other (4)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2007).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multi-transmitter system. The scene is illuminated with one transmitter at a time. A shift of Δx in the transmitter location results in a shift of −Δx in the backscattered field.

Fig. 2
Fig. 2

(a) Wavefront difference between two overlapping apertures. (b) Sub-regions with uniform phase offset.

Fig. 3
Fig. 3

(a) Actual multi-transmitter system. (b) Equivalent multi-aperture system.

Fig. 4
Fig. 4

(a) to (c) show the phase difference in overlap regions. (d) to (e) show the subregions within each overlap region.

Fig. 5
Fig. 5

(a) Image formed at an aperture by averaging 30 speckle realizations. (b) Estimated phase error using the proposed algorithm. (Units are in waves; up to fifth order Zernike polynomials are used.) (c) Aberration corrected first aperture, corresponding to (a). (d) Composite formed by all three aberration-corrected apertures.

Fig. 6
Fig. 6

Root mean square error in the wavefront reconstruction as a function of root mean square wavefront aberration.

Fig. 7
Fig. 7

Root mean square error in the wavefront reconstruction as a function of signal to noise ratio in the pupil field.

Fig. 8
Fig. 8

A sample restoration, where the RMS wavefront aberration is 0.4951 and the signal to noise ratio is 100. (a)–(c) The difference fronts and the corresponding sub-regions are displayed. (d) Actual wavefront aberration. (e) Estimated wavefront aberration. (f)–(g) The difference between the actual and estimated wavefront aberrations. The RMS wavefront reconstruction error is 0.0403. Note that in (d)–(f), the same colormap is used for comparison purposes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U i ( x , y ) = P ( x , y ) exp ( j 2 π W e ( x , y ) ) U b ( x x i , y y i ) , i = 1 , 2 ,
W i ( x , y ) = W e ( x , y ) + W b ( x x i , y y i ) , i = 1 , 2 .
Δ W ( x , y ) = W 1 ( x + x 1 , y + y 1 ) W 2 ( x + x 2 , y + y 2 ) = ( W e ( x + x 1 , y + y 1 ) + W b ( x , y ) ) ( W e ( x + x 2 , y + y 2 ) + W b ( x , y ) ) = W e ( x + x 1 , y + y 1 ) W e ( x + x 2 , y + y 2 ) .
Δ W ( x , y ) = k a k Z k ( x + x 1 , y + y 1 ) k a k Z k ( x + x 2 , y + y 2 ) = k a k ( Z k ( x + x 1 , y + y 1 ) Z k ( x + x 2 , y + y 2 ) ) = k a k Δ Z k ( x , y ) ,
Δ W ( m ) ( x i ( m ) , y i ( m ) ) = α ( m ) + k a k Δ Z k ( m ) ( x i ( m ) , y i ( m ) ) ,
[ Δ W ( 1 ) ( x 1 ( 1 ) , y 1 ( 1 ) ) Δ W ( 1 ) ( x N 1 ( 1 ) , y N 1 ( 1 ) ) Δ W ( 2 ) ( x 1 ( 2 ) , y 1 ( 2 ) ) Δ W ( 2 ) ( x N 2 ( 2 ) , y N 2 ( 2 ) ) Δ W ( M ) ( x 1 ( M ) , y 1 ( M ) ) Δ W ( M ) ( x N M ( M ) , y N M ( M ) ) ] = [ 1 0 0 Δ Z 1 ( 1 ) ( x 1 ( 1 ) , y 1 ( 1 ) ) Δ Z K ( 1 ) ( x 1 ( 1 ) , y 1 ( 1 ) ) 1 0 0 Δ Z 1 ( 1 ) ( x N 1 ( 1 ) , y N 1 ( 1 ) ) Δ Z K ( 1 ) ( x N 1 ( 1 ) , y N 1 ( 1 ) ) 0 1 0 Δ Z 1 ( 2 ) ( x 1 ( 2 ) , y 1 ( 2 ) ) Δ Z K ( 2 ) ( x 1 ( 2 ) , y 1 ( 2 ) ) 0 1 0 Δ Z 1 ( 2 ) ( x N 2 ( 2 ) , y N 2 ( 2 ) ) Δ Z K ( 2 ) ( x N 2 ( 2 ) , y N 2 ( 2 ) ) 0 0 1 Δ Z 1 ( M ) ( x 1 ( M ) , y 1 ( M ) ) Δ Z K ( M ) ( x 1 ( M ) , y 1 ( M ) ) 0 0 1 Δ Z 1 ( M ) ( x N M ( M ) , y N M ( M ) ) Δ Z K ( M ) ( x N M ( M ) , y N M ( M ) ) ] [ α ( 1 ) α ( 2 ) α ( M ) a 1 a K ]

Metrics