Abstract

We present the experimental observation of multi-wavelength fiber Bragg gratings in As2Se3 fiber. The gratings are internally written via two-photon absorption of 1550 nm pump light and its first and second order Stokes waves generated by cascaded stimulated Brillouin scattering (SBS). We demonstrate a parameter regime that allows for 4 dB grating enhancement by suppression of SBS.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).
  3. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
    [CrossRef]
  4. C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
    [CrossRef]
  5. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
    [CrossRef]
  6. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in sub-wavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
    [CrossRef] [PubMed]
  7. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
    [CrossRef]
  8. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005).
    [CrossRef] [PubMed]
  9. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  10. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  11. R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation,” Opt. Lett.36(18), 3687–3689 (2011).
    [CrossRef] [PubMed]
  12. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express13(25), 10266–10271 (2005).
    [CrossRef] [PubMed]
  13. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
    [CrossRef]
  14. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
    [CrossRef]
  15. V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
    [CrossRef] [PubMed]
  16. K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
    [CrossRef]
  17. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
    [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  19. K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
    [CrossRef]
  22. M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
    [CrossRef]
  23. J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed fabry-perot filter-based multi-wavelength tunable laser,” J. Lightwave Technol.29(22), 3381–3386 (2011).
    [CrossRef]

2012 (1)

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

2011 (6)

2009 (2)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

2008 (2)

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
[CrossRef]

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

2005 (2)

1997 (2)

K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1996 (2)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

1994 (1)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

1991 (1)

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

1976 (1)

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
[CrossRef]

Abedin, K. S.

Aditya, S.

Aggarwal, I.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

Aggarwal, I. D.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Ahmad, R.

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in sub-wavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
[CrossRef] [PubMed]

Al-Mansoori, M. H.

M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
[CrossRef]

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

Baker, C.

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Besnard, P.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Bolger, J. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

Brawley, G. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

Brilland, L.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Choi, D.-Y.

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Dekker, S. A.

Doisy, M.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Eggleton, B. J.

R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation,” Opt. Lett.36(18), 3687–3689 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Florea, C.

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Freeman, D.

Fu, S.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
[CrossRef]

Hudson, D. D.

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Jackson, S. D.

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
[CrossRef]

Judge, A. C.

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
[CrossRef]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

LaRochelle, S.

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

Lee, K. E. K.

Leguillon, Y.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Li, E.

Luan, F.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Mägi, E. C.

Mahdi, M. A.

M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
[CrossRef]

Mechin, D.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Mizrahi, V.

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

Pant, R.

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

Poulton, C. G.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Rochette, M.

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in sub-wavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
[CrossRef] [PubMed]

Sanghera, J. S.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Shaw, B.

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

Shaw, L. B.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Shum, P. P.

Sipe, J. E.

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

Stegeman, G. I.

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Ta’eed, V. G.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

Toupin, P.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Tow, K. H.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

Tregoat, D.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Troles, J.

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Wong, J. H.

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

Zamzuri, A. K.

M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
[CrossRef]

Zhou, J.

Appl. Phys. Lett. (3)

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett.29(3), 185–187 (1976).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Electron. Lett. (3)

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett.44(14), 846–847 (2008).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett.30(19), 1620–1622 (1994).
[CrossRef]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett.32(17), 1611–1613 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron.15, 114–119 (2009).

IEEE Photon. Technol. Lett. (1)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett.8(1), 60–62 (1996).
[CrossRef]

J. Lightwave Technol. (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed fabry-perot filter-based multi-wavelength tunable laser,” J. Lightwave Technol.29(22), 3381–3386 (2011).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Laser Phys. Lett. (1)

M. H. Al-Mansoori, M. A. Mahdi, and A. K. Zamzuri, “Tunable multiwavelength Brillouin-Erbium fiber laser with intra-cavity pre-amplified Brillouin pump,” Laser Phys. Lett.5(2), 139–143 (2008).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

C. Florea, J. S. Sanghera, B. Shaw, and I. D. Aggarwal, “Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask,” Opt. Mater.31(6), 942–944 (2009).
[CrossRef]

Phys. Rev. A (1)

V. Mizrahi, S. LaRochelle, G. I. Stegeman, and J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A43(1), 433–438 (1991).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core Chalcogenide fiber,” Proc. SPIE8426, 842611, 842611-10 (2012).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of multi-wavelength grating inscription via SBS. (a) The generation of first and second order Stokes waves via cascaded SBS. Pump and Stokes waves create standing waves with different periods due to reflection from the facets in a fiber cavity of length L. (b) Resulting photo-induced index change |Δn(κ)| as a function of spatial frequency κ. (c) Transmission spectrum of the resulting multi-wavelength grating.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for inducing Hill-type gratings in As2Se3 step-index fibers, PC: polarization controller, MOD: optical intensity modulator, EDFA: erbium doped fiber amplifier, BPF: bandpass filter, CI: circulator, OSA: optical spectrum analyzer.

Fig. 3
Fig. 3

a) Transmission spectra of Hill-type gratings in a 10 cm long As2Se3 step-index fiber written at pump wavelength λP as a function of time measured with the ASE source. The spectra are successively shifted by −4 dB for better visibility. (b) Transmission spectra of the grating after 28 minutes (solid) superimposed with the back-scattered writing signal (dashed) consisting of pump and SBS showing the correspondence between transmission dips and Stokes waves.

Fig. 4
Fig. 4

Reflection spectra of the high peak intensity pump signal from the As2Se3 fiber measured for two different pump pulse lengths τ1 and τ2, and two As2Se3 sample lengths L1 and L2. The coupled peak power of the pump was about P = 40 W for all measurements. The threshold powers for the first Stokes waves for the cases (a) - (d) are estimated to be Pth = 5W, 27W, 14W and 76W, respectively.

Fig. 5
Fig. 5

(a) Transmission spectra of Hill-type gratings in a 3.6 cm long As2Se3 step-index fiber as a function of time measured with the ASE source. The spectra are successively shifted by −4 dB for better visibility. (b) Transmission spectra of the grating after 30 minutes (solid) superimposed with the back-scattered writing signal (dashed).

Metrics