E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

R. W. Boyd and J. P. Dowling, “Quantum lithography: status of the field,” Quant. Inf. Processing11, 891–901 (2012).

[CrossRef]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum-statistical analysis of superresolution for optical systems with circular symmetry,” Phys. Rev. A78(4), 043824 (2008).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

V. N. Beskrovny and M. I. Kolobov, “Quantum theory of super-resolution for optical systems with circular apertures,” Opt. Commun.264(1), 9–12 (2006).

[CrossRef]

G. Walter and T. Soleski, “A new friendly method of computing prolate spheroidal wave functions and wavelets,” Appl. Comput. Harmon. Anal.19, 432–443 (2005).

[CrossRef]

D. R. Smith, “How to build a superlens,” Science308, 502–503 (2005).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

V. N. Beskrovnyy and M. I. Kolobov, “Quantum limits of super-resolution in reconstruction of optical objects,” Phys. Rev. A71(4), 043802 (2005).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).

[CrossRef]
[PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85(18), 3789–3792 (2000).

[CrossRef]
[PubMed]

H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and interpolation,” IOP-Science17, 805–838 (2000).

C.-S. Hu, “Prolate spheroidal wave functions of large frequency parameters c = kf and their applications in electromagnetic theory,” IEEE Trans. Antennas Propag.AP-34, 114–119 (1986).

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta29, 727–746 (1982).

[CrossRef]

B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,” Prog. Opt.9, 311–407 (1971).

[CrossRef]

D. Slepian and E. Sonnenblick, “Eigenvalues associated with prolate spheroidal wave functions of zero order,” Bell Syst. Tech. J.44, 1745–1759 (1965).

J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am.54, 931–936 (1964).

[CrossRef]

J. C. Heurtley, “Hyperspheroidal functions-optical resonators with circular mirrors,” Proc. Symp. Quasi-Opt.1, 367–375 (1964).

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty IV,” Bell Syst. Tech. J.43, 3009–3057 (1964).

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta29, 727–746 (1982).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum-statistical analysis of superresolution for optical systems with circular symmetry,” Phys. Rev. A78(4), 043824 (2008).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum theory of super-resolution for optical systems with circular apertures,” Opt. Commun.264(1), 9–12 (2006).

[CrossRef]

V. N. Beskrovnyy and M. I. Kolobov, “Quantum limits of super-resolution in reconstruction of optical objects,” Phys. Rev. A71(4), 043802 (2005).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

R. W. Boyd and J. P. Dowling, “Quantum lithography: status of the field,” Quant. Inf. Processing11, 891–901 (2012).

[CrossRef]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

I. C. Moore and M. Cada, “Prolate spheroidal wave functions, an introduction to the Slepian series and its properties,” Appl. Comput. Harmon. Anal.16, 208–230 (2004).

[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

R. W. Boyd and J. P. Dowling, “Quantum lithography: status of the field,” Quant. Inf. Processing11, 891–901 (2012).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85(18), 3789–3792 (2000).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

J. C. Heurtley, “Hyperspheroidal functions-optical resonators with circular mirrors,” Proc. Symp. Quasi-Opt.1, 367–375 (1964).

C.-S. Hu, “Prolate spheroidal wave functions of large frequency parameters c = kf and their applications in electromagnetic theory,” IEEE Trans. Antennas Propag.AP-34, 114–119 (1986).

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum-statistical analysis of superresolution for optical systems with circular symmetry,” Phys. Rev. A78(4), 043824 (2008).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum theory of super-resolution for optical systems with circular apertures,” Opt. Commun.264(1), 9–12 (2006).

[CrossRef]

V. N. Beskrovnyy and M. I. Kolobov, “Quantum limits of super-resolution in reconstruction of optical objects,” Phys. Rev. A71(4), 043802 (2005).

[CrossRef]

I. V. Sokolov and M. I. Kolobov, “Squeezed-light source for superresolving microscopy,” Opt. Lett.29, 703–705 (2004).

[CrossRef]
[PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85(18), 3789–3792 (2000).

[CrossRef]
[PubMed]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

I. C. Moore and M. Cada, “Prolate spheroidal wave functions, an introduction to the Slepian series and its properties,” Appl. Comput. Harmon. Anal.16, 208–230 (2004).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).

[CrossRef]
[PubMed]

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta29, 727–746 (1982).

[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and interpolation,” IOP-Science17, 805–838 (2000).

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

D. Slepian and E. Sonnenblick, “Eigenvalues associated with prolate spheroidal wave functions of zero order,” Bell Syst. Tech. J.44, 1745–1759 (1965).

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty IV,” Bell Syst. Tech. J.43, 3009–3057 (1964).

G. Walter and T. Soleski, “A new friendly method of computing prolate spheroidal wave functions and wavelets,” Appl. Comput. Harmon. Anal.19, 432–443 (2005).

[CrossRef]

D. Slepian and E. Sonnenblick, “Eigenvalues associated with prolate spheroidal wave functions of zero order,” Bell Syst. Tech. J.44, 1745–1759 (1965).

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

G. Walter and T. Soleski, “A new friendly method of computing prolate spheroidal wave functions and wavelets,” Appl. Comput. Harmon. Anal.19, 432–443 (2005).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and interpolation,” IOP-Science17, 805–838 (2000).

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and interpolation,” IOP-Science17, 805–838 (2000).

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

I. C. Moore and M. Cada, “Prolate spheroidal wave functions, an introduction to the Slepian series and its properties,” Appl. Comput. Harmon. Anal.16, 208–230 (2004).

[CrossRef]

G. Walter and T. Soleski, “A new friendly method of computing prolate spheroidal wave functions and wavelets,” Appl. Comput. Harmon. Anal.19, 432–443 (2005).

[CrossRef]

D. Slepian and E. Sonnenblick, “Eigenvalues associated with prolate spheroidal wave functions of zero order,” Bell Syst. Tech. J.44, 1745–1759 (1965).

D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty IV,” Bell Syst. Tech. J.43, 3009–3057 (1964).

C.-S. Hu, “Prolate spheroidal wave functions of large frequency parameters c = kf and their applications in electromagnetic theory,” IEEE Trans. Antennas Propag.AP-34, 114–119 (1986).

H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and interpolation,” IOP-Science17, 805–838 (2000).

G. Toraldo and Di Francia, “Resolving power and information,” J. Opt. Soc. Am.45, 497–501 (1955).

[CrossRef]

J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am.54, 931–936 (1964).

[CrossRef]

C. K. Rushforth, “Restoration, resolution, and noise,” J. Opt. Soc. Am.58, 539–545 (1968).

[CrossRef]

G. Toraldo and Di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am.59, 799–804 (1969).

[CrossRef]

B. R. Frieden, “Band-unlimited reconstruction of optical objects and spectra,” J. Opt. Soc. Am.57, 1013–1019 (1967).

[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Materials11, 432–435 (2012).

[CrossRef]

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis,” Opt. Acta29, 727–746 (1982).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum theory of super-resolution for optical systems with circular apertures,” Opt. Commun.264(1), 9–12 (2006).

[CrossRef]

V. N. Beskrovny and M. I. Kolobov, “Quantum-statistical analysis of superresolution for optical systems with circular symmetry,” Phys. Rev. A78(4), 043824 (2008).

[CrossRef]

V. N. Beskrovnyy and M. I. Kolobov, “Quantum limits of super-resolution in reconstruction of optical objects,” Phys. Rev. A71(4), 043802 (2005).

[CrossRef]

A. C. D. Luca, S. Kosmeier, K. Dholakia, and M. Mazilu, “Optical eigenmode imaging,” Phys. Rev. A84, 021803 (2011).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys. Rev. A63, 063407 (2001).

[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A79, 013827 (2009).

[CrossRef]

F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-rayleigh imaging via N-photon detection,” Phys. Rev. Lett.105, 163602 (2010).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).

[CrossRef]
[PubMed]

H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011).

[CrossRef]
[PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett.85(18), 3789–3792 (2000).

[CrossRef]
[PubMed]

J. C. Heurtley, “Hyperspheroidal functions-optical resonators with circular mirrors,” Proc. Symp. Quasi-Opt.1, 367–375 (1964).

B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,” Prog. Opt.9, 311–407 (1971).

[CrossRef]

R. W. Boyd and J. P. Dowling, “Quantum lithography: status of the field,” Quant. Inf. Processing11, 891–901 (2012).

[CrossRef]

D. R. Smith, “How to build a superlens,” Science308, 502–503 (2005).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686 (2007).

[CrossRef]
[PubMed]