Abstract

A novel Photon-Counting Spatial-Diversity-and-Multiplexing (PC-SDM) scheme is proposed for high-speed Free-Space Optical (FSO) transmission over shot-noise limited Poisson channels experiencing turbulence-induced fading. In particular, Iterative Parallel Interference Cancellation (Iter-PIC) aided Q-ary Pulse Position Modulation (Q-PPM) is employed. Simulation results demonstrate that our proposed scheme exhibits a high integrity and a high throughput, while mitigating the effects of multi-stream interference and background radiation noise.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24(12), 4750–4762 (2006).
    [CrossRef]
  2. L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
    [CrossRef]
  3. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express18(13), 13915–13926 (2010).
    [CrossRef] [PubMed]
  4. A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
    [CrossRef]
  5. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
    [CrossRef]
  6. W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
    [CrossRef]
  7. K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
    [CrossRef]
  8. M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
    [CrossRef]
  9. A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
    [CrossRef]
  10. J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
    [CrossRef]
  11. S. M. Aghajanzadeh and M. Uysal, “Diversity-multiplexing trade-off in coherent free-space optical systems with multiple receivers,” J. Opt. Commun. Netw.2(12), 1087–1094 (2010).
    [CrossRef]
  12. E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
    [CrossRef]
  13. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
    [CrossRef]
  14. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
    [CrossRef]
  15. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
    [CrossRef]
  16. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
    [CrossRef]
  17. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
    [CrossRef]
  18. C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
    [CrossRef]
  19. R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
    [CrossRef]
  20. A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
    [CrossRef]

2012

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

2010

2009

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

2008

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

2007

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

2006

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24(12), 4750–4762 (2006).
[CrossRef]

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

2005

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

2001

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

1996

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

1994

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

Aghajanzadeh, S. M.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Baedke, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

Bayaki, E.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

Berrou, C.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

Brandt-Pearce, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

Cao, Q.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Chakraborty, K.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Chan, V. W. S.

Cheng, J.

Dey, S.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Djordjevic, I. B.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Farid, A. A.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

Franceschetti, M.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Gappmair, W.

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

Georghiades, C.

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

Glavieux, A.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

Gulliver, T. A.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Gyongyosi, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Haas, H.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Hanzo, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

Holzman, J. F.

Hranilovic, S.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

Imre, S.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Lampe, L.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Langer, K. D.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Leveque, J. H.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Li, J.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Mallik, R.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

Muhammad, S. S.

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

Neifeld, M. A.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Niu, M.

O’Brien, D.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Paraskevopoulos, A.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Reid, A. C.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Riediger, M. L. B.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Rupp, M.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Schober, R.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Swoboda, R.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Taylor, D. P.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Uysal, M.

S. M. Aghajanzadeh and M. Uysal, “Diversity-multiplexing trade-off in coherent free-space optical systems with multiple receivers,” J. Opt. Commun. Netw.2(12), 1087–1094 (2010).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Vasic, B.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Voss, S. H.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Vucic, J.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Wells, J.

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

Wilson, S. G.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Yu, M.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Zhang, R.

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

Electron. Lett.

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

IEEE J. Select. Areas Commun.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

IEEE Microw. Mag.

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

IEEE Trans. Commun.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

IEEE Trans. Infor. Theory

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

IEEE Trans. Inform. Theory

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

IEEE Trans. Wireless Commun.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

IEEE/ASME Trans. Mech.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Express

Proc. IEEE

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Other

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Model of the Q-PPM based PC-SDM FSO system over Poisson atmospheric channels.

Fig. 2
Fig. 2

Mapping example of the 2-PPM symbol.

Fig. 3
Fig. 3

BER for the Gamma-Gamma fading link (α = 4, β = 4) relying on 2-PPM and Rc = 1/8 upon varying N and M.

Fig. 4
Fig. 4

BER for different scintillation indeces, 2-PPM and Rc = 1/8.

Fig. 5
Fig. 5

BER of multi-stream transmissions for M = 4, 5, 6 over the Gamma-Gamma fading links (α = 4, β = 4) for 2-PPM and Rc = 1/8.

Fig. 6
Fig. 6

Comparison of various Q-PPM schemes for Gamma-Gamma fading links (α = 4, β = 4) with Rc = 1/8.

Fig. 7
Fig. 7

Performance of the NE block for the Gamma-Gamma fading link (α = 4, β = 1) with Rc = 1/8 and Eb = −170dBJ.

Tables (2)

Tables Icon

Table 1 2-PPM based Iter-PIC Algorithm

Tables Icon

Table 2 Natural Mapping for Q-PPM Symbols

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Pr ( I m , n ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I m , n ( α + β ) / 2 1 K α β ( 2 α β I m , n ) , I m , n > 0 .
α = [ exp ( 0.49 χ 2 ( 1 + 0.18 d 2 + 0.56 χ 12 / 5 ) 7 / 6 ) 1 ] 1 ,
β = [ exp ( 0.51 χ 2 ( 1 + 0.69 χ 12 / 5 ) 5 / 6 ( 1 + 0.9 d 2 + 0.62 d 2 χ 12 / 5 ) 5 / 6 ) 1 ] 1 ,
Pr [ r n j ] = [ n s m = 1 M I m , n s m , n j + n b ] r n j r n j ! exp [ ( n s m = 1 M I m , n s m , n j + n b ) ] ,
L MIC apost ( x m , n 1 ) = log Pr [ x m , n 1 = 1 | ( r m , n 2 , r m , n 1 ) ] Pr [ x m , n 1 = 0 | ( r m , n 2 , r m , n 1 ) ] = log Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 1 ] Pr [ x m , n 1 = 1 ] Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 0 ] Pr [ x m , n 1 = 0 ] = log Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 1 ] Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 0 ] L MIC e ( x m , n 1 ) + log Pr [ x m , n 1 = 1 ] Pr [ x m , n 1 = 0 ] L MIC a ( x m , n 1 ) ,
L MIC e ( x m , n 1 ) = log Pr [ ( r n 2 , r n 1 ) + ( s m , n 2 = 1 , s m , n 1 = 0 ) ] Pr [ ( r n 2 , r n 1 ) | ( s m , n 2 = 0 , s m , n 1 = 1 ) ] = log Pr [ r n 2 | s m , n 2 = 1 ] Pr [ r n 1 | s m , n 1 = 0 ] Pr [ r n 2 | s m , n 2 = 0 ] Pr [ r n 1 | s m , n 1 = 1 ] = log exp { r n 2 log [ 1 + n s I m , n 2 n s m ˜ = 1 m ˜ m M I m ˜ , n 2 s m ˜ , n 2 + n b ] n s I m , n 2 } exp { r n 1 log [ 1 + n s I m , n 1 n s m ˜ = 1 m ˜ m M I m ˜ , n 1 s m ˜ , n 1 + n b ] n s I m , n 1 } = { r n 2 log [ 1 + n s I m , n 2 ξ m , n 2 ] n s I m , n 2 } { r n 1 log [ 1 + n s I m , n 1 ξ m , n 1 ] n s I m , n 1 } = r n 2 log [ 1 + n s I m , n 2 ξ m , n 2 ] r n 1 log [ 1 + n s I m , n 1 ξ m , n 1 ] n s I m , n 2 + n s I m , n 1 ,
ξ m , n Est ( 1 ) = n s m ˜ = 1 m ˜ m M I m ˜ , n 1 E [ s m ˜ , n 1 ] + n b ,
E [ s m , n 1 ] = 1 × Pr ( s m , n 1 = 1 ) + 0 × Pr ( s m , n 1 = 0 ) = Pr ( s m , n 1 = 1 ) = Pr ( x m , n 1 = 0 ) = 1 1 + exp [ L MIC a ( x m , n 1 ) ] ,
ξ m , n Est ( 2 ) = n s m ˜ = 1 m ˜ m M I m ˜ , n 2 E ( s m ˜ , n 2 ) + n b ,
L DEC Bit ( d m i ) = z = 1 L c FEC L DEC a ( com ) ( c m ( i 1 ) L c FEC + z ) s z ,
[ L DEC LLR ( c m ( i 1 ) L c FEC + 1 ) , L DEC LLR ( c m ( i 1 ) L c FEC + 2 ) , , L DEC LLR ( c m i L c FEC ) ] = L DEC Bit ( d m i ) s .
L MIC e ( x m , n k , z ) = Ω ( x m , n k , z = 1 ) exp { r m , n k , u log [ 1 + n s I m , n k , u ξ m , n Est ( k , u ) ] n s I m , n k , u + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { r m , n k , w log [ 1 + n s I m , n k , w ξ m , n Est ( k , w ) ] n s I m , n k , w + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } ,
L MIC aposteriori ( x m , n k , z ) = log Pr [ x m , n k , z = 1 | r m , n k ] Pr [ x m , n k , z = 0 | r m , n k ] = log Pr [ x m , n k , z = 1 | { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } ] Pr [ x m , n k , z = 0 | { r m , n k , Q , , r m , n k , z , r m , n k , 1 } ] = log Pr [ r m , n k | x m , n k , z = 1 ] Pr [ r m , n k | x m , n k , z = 0 ] L MIC e ( x m , n k , z ) + log Pr [ x m , n k , z = 1 ] Pr [ x m , n k , z = 0 ] L MIC a ( x m , n k , z ) ,
L MIC e ( x m , n k , z ) = log Pr [ r m , n k | x m , n k , z = 1 ] Pr [ r m , n k | x m , n k , z = 0 ] = log Ω ( x m , n k , z = 1 ) Pr [ r m , n k | { x m , n k , log 2 Q , , x m , n k , z = 1 , , x m , n k , 1 } ] Pr [ x m , n k , log 2 Q , , x m , n k , z + 1 , x m , n k , z 1 , , x m , n k , 1 ] Ω ( x m , n k , z = 0 ) Pr [ r m , n k | { x m , n k , log 2 Q , , x m , n k , z = 0 , , x m , n k , 1 } ] Pr [ x m , n k , log 2 Q , , x m , n k , z + 1 , x m , n k , z 1 , , x m , n k , 0 ] ,
L MIC e ( x m , n k , z ) = log Ω ( x m , n k , z = 1 ) Pr [ { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } | s m , n k , ( 1 ) ] Pr [ x ˜ m , n k , z , ( 1 ) ] Ω ( x m , n k , z = 0 ) Pr [ { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } | s m , n k , ( 0 ) ] Pr [ x ˜ m , n k , z , ( 0 ) ] = log Ω ( x m , n k , z = 1 ) { q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] } Ω ( x m , n k , z = 0 ) { q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] } = log Ω ( x m , n k , z = 1 ) q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] q = 1 Q Pr [ r m , n k , q | s m , n k , q = 0 ] × i = 1 log 2 Q 1 Pr [ x m , n k , i = 0 ] Ω ( x m , n k , z = 0 ) q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , k , i ] q = 1 Q Pr [ r m , n k , q | s m , n k , q = 0 ] × i = 1 log 2 Q 1 Pr [ x m , n k , i = 0 ] ,
L MIC e ( x m , n k , z ) = log Ω ( x m , n k , z = 1 ) exp { L e ( s m , n k , u ) + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { L e ( s m , n k , w ) + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } ,
L e ( s m , n k , u ) = log Pr ( r m , n k , u | s m , n k , u + 1 ) Pr ( r m , n k , u | s m , n k , u = 0 ) = log [ n s I m , n k , u + n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ] r m , n k , u r m , n k , u ! exp [ ( n s I m , n k , u + n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ) ] [ n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ] r m , n k , u r m , n k , u ! exp [ ( n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ) ] = r m , n k , u log [ 1 + n s I m , n k , u ξ m , n k , u ] n s I m , n k , u ,
ξ m , n Est ( k , u ) = n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u E [ s m ˜ , n k , u ] + n b ,
L MIC e ( x m , n k , z ) = Ω ( x m , n k , z = 1 ) exp { r m , n k , u log [ 1 + n s I m , n k , u ξ m , n Est ( k , u ) ] n s I m , n k , u + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { r m , n k , w log [ 1 + n s I m , n k , w ξ m , n Est ( k , w ) ] n s I m , n k , w + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } .

Metrics