Abstract

A novel Photon-Counting Spatial-Diversity-and-Multiplexing (PC-SDM) scheme is proposed for high-speed Free-Space Optical (FSO) transmission over shot-noise limited Poisson channels experiencing turbulence-induced fading. In particular, Iterative Parallel Interference Cancellation (Iter-PIC) aided Q-ary Pulse Position Modulation (Q-PPM) is employed. Simulation results demonstrate that our proposed scheme exhibits a high integrity and a high throughput, while mitigating the effects of multi-stream interference and background radiation noise.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24(12), 4750–4762 (2006).
    [CrossRef]
  2. L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
    [CrossRef]
  3. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express18(13), 13915–13926 (2010).
    [CrossRef] [PubMed]
  4. A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
    [CrossRef]
  5. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
    [CrossRef]
  6. W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
    [CrossRef]
  7. K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
    [CrossRef]
  8. M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
    [CrossRef]
  9. A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
    [CrossRef]
  10. J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
    [CrossRef]
  11. S. M. Aghajanzadeh and M. Uysal, “Diversity-multiplexing trade-off in coherent free-space optical systems with multiple receivers,” J. Opt. Commun. Netw.2(12), 1087–1094 (2010).
    [CrossRef]
  12. E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
    [CrossRef]
  13. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
    [CrossRef]
  14. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
    [CrossRef]
  15. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
    [CrossRef]
  16. M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
    [CrossRef]
  17. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
    [CrossRef]
  18. C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
    [CrossRef]
  19. R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
    [CrossRef]
  20. A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
    [CrossRef]

2012 (2)

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

2010 (3)

2009 (2)

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

2008 (3)

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

2007 (1)

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

2006 (3)

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol.24(12), 4750–4762 (2006).
[CrossRef]

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

2005 (2)

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

2001 (1)

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

1996 (1)

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

1994 (1)

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

Aghajanzadeh, S. M.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Baedke, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

Bayaki, E.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

Berrou, C.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

Brandt-Pearce, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

Cao, Q.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Chakraborty, K.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Chan, V. W. S.

Cheng, J.

Dey, S.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Djordjevic, I. B.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Farid, A. A.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

Franceschetti, M.

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

Gappmair, W.

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

Georghiades, C.

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

Glavieux, A.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

Gulliver, T. A.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Gyongyosi, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Haas, H.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Hanzo, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

Holzman, J. F.

Hranilovic, S.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

Imre, S.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Lampe, L.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Langer, K. D.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Leveque, J. H.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Li, J.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Mallik, R.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

Muhammad, S. S.

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

Neifeld, M. A.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Niu, M.

O’Brien, D.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Paraskevopoulos, A.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Reid, A. C.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Riediger, M. L. B.

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Rupp, M.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Schober, R.

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

Swoboda, R.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Taylor, D. P.

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

Uysal, M.

S. M. Aghajanzadeh and M. Uysal, “Diversity-multiplexing trade-off in coherent free-space optical systems with multiple receivers,” J. Opt. Commun. Netw.2(12), 1087–1094 (2010).
[CrossRef]

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Vasic, B.

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

Voss, S. H.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Vucic, J.

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

Wells, J.

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

Wilson, S. G.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

Yu, M.

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

Zhang, R.

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

Electron. Lett. (2)

W. Gappmair and S. S. Muhammad, “Error performance of PPM/Poisson channels in turbulent atmosphere with Gamma-Gamma distribution,” Electron. Lett.43(16), 880–882 (2007).
[CrossRef]

R. Zhang and L. Hanzo, “Space-time coding for high-throughput interleave division multiplexing aided multi-source cooperation,” Electron. Lett.44(5), 367–368 (2008).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Select. Areas Commun.23(9), 1901–1910 (2005).
[CrossRef]

IEEE Microw. Mag. (1)

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag.10(3), 104–112 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photon. Technol. Lett.18(14), 1491–1493 (2006).
[CrossRef]

IEEE Trans. Commun. (5)

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-decoding,” IEEE Trans. Commun.49(12), 2045–2051 (2001).
[CrossRef]

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun.44(10), 1261–1271 (1996).
[CrossRef]

E. Bayaki, R. Schober, and R. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Trans. Commun.57(11), 3415–3424 (2009).
[CrossRef]

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun.60(2), 479–487 (2012).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.53(8), 1402–1412 (2005).
[CrossRef]

IEEE Trans. Infor. Theory (1)

K. Chakraborty, S. Dey, and M. Franceschetti, “Outage capacity of the MIMO Poisson fading channels,” IEEE Trans. Infor. Theory54(11), 4887–4907 (2008).
[CrossRef]

IEEE Trans. Inform. Theory (1)

C. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Trans. Inform. Theory40(5), 1313–1326 (1994).
[CrossRef]

IEEE Trans. Wireless Commun. (2)

M. Uysal, J. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels,” IEEE Trans. Wireless Commun.5(6), 1229–1233 (2006).
[CrossRef]

M. L. B. Riediger, R. Schober, and L. Lampe, “Multiple-symbol detection for photon-counting MIMO free-space optical communications,” IEEE Trans. Wireless Commun.7(12), 5369–5379 (2008).
[CrossRef]

IEEE/ASME Trans. Mech. (1)

A. Paraskevopoulos, J. Vucic, S. H. Voss, R. Swoboda, and K. D. Langer, “Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications,” IEEE/ASME Trans. Mech.15(4), 541–547 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Proc. IEEE (1)

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE100(13), 1853–1888, (2012).
[CrossRef]

Other (1)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Model of the Q-PPM based PC-SDM FSO system over Poisson atmospheric channels.

Fig. 2
Fig. 2

Mapping example of the 2-PPM symbol.

Fig. 3
Fig. 3

BER for the Gamma-Gamma fading link (α = 4, β = 4) relying on 2-PPM and Rc = 1/8 upon varying N and M.

Fig. 4
Fig. 4

BER for different scintillation indeces, 2-PPM and Rc = 1/8.

Fig. 5
Fig. 5

BER of multi-stream transmissions for M = 4, 5, 6 over the Gamma-Gamma fading links (α = 4, β = 4) for 2-PPM and Rc = 1/8.

Fig. 6
Fig. 6

Comparison of various Q-PPM schemes for Gamma-Gamma fading links (α = 4, β = 4) with Rc = 1/8.

Fig. 7
Fig. 7

Performance of the NE block for the Gamma-Gamma fading link (α = 4, β = 1) with Rc = 1/8 and Eb = −170dBJ.

Tables (2)

Tables Icon

Table 1 2-PPM based Iter-PIC Algorithm

Tables Icon

Table 2 Natural Mapping for Q-PPM Symbols

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Pr ( I m , n ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I m , n ( α + β ) / 2 1 K α β ( 2 α β I m , n ) , I m , n > 0 .
α = [ exp ( 0.49 χ 2 ( 1 + 0.18 d 2 + 0.56 χ 12 / 5 ) 7 / 6 ) 1 ] 1 ,
β = [ exp ( 0.51 χ 2 ( 1 + 0.69 χ 12 / 5 ) 5 / 6 ( 1 + 0.9 d 2 + 0.62 d 2 χ 12 / 5 ) 5 / 6 ) 1 ] 1 ,
Pr [ r n j ] = [ n s m = 1 M I m , n s m , n j + n b ] r n j r n j ! exp [ ( n s m = 1 M I m , n s m , n j + n b ) ] ,
L MIC apost ( x m , n 1 ) = log Pr [ x m , n 1 = 1 | ( r m , n 2 , r m , n 1 ) ] Pr [ x m , n 1 = 0 | ( r m , n 2 , r m , n 1 ) ] = log Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 1 ] Pr [ x m , n 1 = 1 ] Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 0 ] Pr [ x m , n 1 = 0 ] = log Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 1 ] Pr [ ( r m , n 2 , r m , n 1 ) | x m , n 1 = 0 ] L MIC e ( x m , n 1 ) + log Pr [ x m , n 1 = 1 ] Pr [ x m , n 1 = 0 ] L MIC a ( x m , n 1 ) ,
L MIC e ( x m , n 1 ) = log Pr [ ( r n 2 , r n 1 ) + ( s m , n 2 = 1 , s m , n 1 = 0 ) ] Pr [ ( r n 2 , r n 1 ) | ( s m , n 2 = 0 , s m , n 1 = 1 ) ] = log Pr [ r n 2 | s m , n 2 = 1 ] Pr [ r n 1 | s m , n 1 = 0 ] Pr [ r n 2 | s m , n 2 = 0 ] Pr [ r n 1 | s m , n 1 = 1 ] = log exp { r n 2 log [ 1 + n s I m , n 2 n s m ˜ = 1 m ˜ m M I m ˜ , n 2 s m ˜ , n 2 + n b ] n s I m , n 2 } exp { r n 1 log [ 1 + n s I m , n 1 n s m ˜ = 1 m ˜ m M I m ˜ , n 1 s m ˜ , n 1 + n b ] n s I m , n 1 } = { r n 2 log [ 1 + n s I m , n 2 ξ m , n 2 ] n s I m , n 2 } { r n 1 log [ 1 + n s I m , n 1 ξ m , n 1 ] n s I m , n 1 } = r n 2 log [ 1 + n s I m , n 2 ξ m , n 2 ] r n 1 log [ 1 + n s I m , n 1 ξ m , n 1 ] n s I m , n 2 + n s I m , n 1 ,
ξ m , n Est ( 1 ) = n s m ˜ = 1 m ˜ m M I m ˜ , n 1 E [ s m ˜ , n 1 ] + n b ,
E [ s m , n 1 ] = 1 × Pr ( s m , n 1 = 1 ) + 0 × Pr ( s m , n 1 = 0 ) = Pr ( s m , n 1 = 1 ) = Pr ( x m , n 1 = 0 ) = 1 1 + exp [ L MIC a ( x m , n 1 ) ] ,
ξ m , n Est ( 2 ) = n s m ˜ = 1 m ˜ m M I m ˜ , n 2 E ( s m ˜ , n 2 ) + n b ,
L DEC Bit ( d m i ) = z = 1 L c FEC L DEC a ( com ) ( c m ( i 1 ) L c FEC + z ) s z ,
[ L DEC LLR ( c m ( i 1 ) L c FEC + 1 ) , L DEC LLR ( c m ( i 1 ) L c FEC + 2 ) , , L DEC LLR ( c m i L c FEC ) ] = L DEC Bit ( d m i ) s .
L MIC e ( x m , n k , z ) = Ω ( x m , n k , z = 1 ) exp { r m , n k , u log [ 1 + n s I m , n k , u ξ m , n Est ( k , u ) ] n s I m , n k , u + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { r m , n k , w log [ 1 + n s I m , n k , w ξ m , n Est ( k , w ) ] n s I m , n k , w + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } ,
L MIC aposteriori ( x m , n k , z ) = log Pr [ x m , n k , z = 1 | r m , n k ] Pr [ x m , n k , z = 0 | r m , n k ] = log Pr [ x m , n k , z = 1 | { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } ] Pr [ x m , n k , z = 0 | { r m , n k , Q , , r m , n k , z , r m , n k , 1 } ] = log Pr [ r m , n k | x m , n k , z = 1 ] Pr [ r m , n k | x m , n k , z = 0 ] L MIC e ( x m , n k , z ) + log Pr [ x m , n k , z = 1 ] Pr [ x m , n k , z = 0 ] L MIC a ( x m , n k , z ) ,
L MIC e ( x m , n k , z ) = log Pr [ r m , n k | x m , n k , z = 1 ] Pr [ r m , n k | x m , n k , z = 0 ] = log Ω ( x m , n k , z = 1 ) Pr [ r m , n k | { x m , n k , log 2 Q , , x m , n k , z = 1 , , x m , n k , 1 } ] Pr [ x m , n k , log 2 Q , , x m , n k , z + 1 , x m , n k , z 1 , , x m , n k , 1 ] Ω ( x m , n k , z = 0 ) Pr [ r m , n k | { x m , n k , log 2 Q , , x m , n k , z = 0 , , x m , n k , 1 } ] Pr [ x m , n k , log 2 Q , , x m , n k , z + 1 , x m , n k , z 1 , , x m , n k , 0 ] ,
L MIC e ( x m , n k , z ) = log Ω ( x m , n k , z = 1 ) Pr [ { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } | s m , n k , ( 1 ) ] Pr [ x ˜ m , n k , z , ( 1 ) ] Ω ( x m , n k , z = 0 ) Pr [ { r m , n k , Q , , r m , n k , 2 , r m , n k , 1 } | s m , n k , ( 0 ) ] Pr [ x ˜ m , n k , z , ( 0 ) ] = log Ω ( x m , n k , z = 1 ) { q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] } Ω ( x m , n k , z = 0 ) { q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] } = log Ω ( x m , n k , z = 1 ) q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , n k , i ] q = 1 Q Pr [ r m , n k , q | s m , n k , q = 0 ] × i = 1 log 2 Q 1 Pr [ x m , n k , i = 0 ] Ω ( x m , n k , z = 0 ) q = 1 Q Pr [ r m , n k , q | s m , n k , q ] × i = 1 log 2 Q 1 Pr [ x m , k , i ] q = 1 Q Pr [ r m , n k , q | s m , n k , q = 0 ] × i = 1 log 2 Q 1 Pr [ x m , n k , i = 0 ] ,
L MIC e ( x m , n k , z ) = log Ω ( x m , n k , z = 1 ) exp { L e ( s m , n k , u ) + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { L e ( s m , n k , w ) + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } ,
L e ( s m , n k , u ) = log Pr ( r m , n k , u | s m , n k , u + 1 ) Pr ( r m , n k , u | s m , n k , u = 0 ) = log [ n s I m , n k , u + n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ] r m , n k , u r m , n k , u ! exp [ ( n s I m , n k , u + n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ) ] [ n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ] r m , n k , u r m , n k , u ! exp [ ( n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u s m ˜ , n k , u + n b ) ] = r m , n k , u log [ 1 + n s I m , n k , u ξ m , n k , u ] n s I m , n k , u ,
ξ m , n Est ( k , u ) = n s m ˜ = 1 , m ˜ m M I m ˜ , n k , u E [ s m ˜ , n k , u ] + n b ,
L MIC e ( x m , n k , z ) = Ω ( x m , n k , z = 1 ) exp { r m , n k , u log [ 1 + n s I m , n k , u ξ m , n Est ( k , u ) ] n s I m , n k , u + i Ψ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } Ω ( x m , n k , z = 0 ) exp { r m , n k , w log [ 1 + n s I m , n k , w ξ m , n Est ( k , w ) ] n s I m , n k , w + i Θ ( x m , n k , i = 1 ) L a ( x m , n k , i ) } .

Metrics