Abstract

We demonstrate a mitigation of Rayleigh back-scattering (RBS) impact in 10-Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier (REAM-SOA). The technique is based on the intensity-noise suppression of the centralized incoherent seed-light, which enables smooth evolution of deployed DWDM applications. We exhibit the power penalty of less than 1 dB at the large RBS crosstalk value of about 8 dB when the optical power of seed-light is lowered about −10 dBm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Wale, “Options and trends for PON tunable optical transceivers,” in European Conference and Exhibition on Optical Communication (ECOC), (2011), Paper Mo.2.C.1.
  2. C. Kazmierski, “Remote amplified modulators: key components for 10 Gb/s WDM PON,” in Optical Fiber Communication Conference (OFC), (2010), paper OWN6.
  3. N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
    [CrossRef]
  4. D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in European Conference and Exhibition on Optical Communication (ECOC), (2009), Paper 8.6.3.
  5. H.-S. Kim, D. C. Kim, K.-S. Kim, B.-S. Choi, and O.-K. Kwon, “10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON,” Opt. Express18(22), 23324–23330 (2010).
    [CrossRef] [PubMed]
  6. D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA Modulator for colourless optical source in WDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC), (2011), Paper Tu.5.LeSaleve.5.
  7. G. Talli, D. Cotter, and P. D. Townsend, “Rayleigh backscattering impairments in access networks with centralised light source,” Electron. Lett.42(15), 877–878 (2006).
    [CrossRef]
  8. M. Fujiwara, H. Jun-ichi Kani, Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol.24(2), 740–746 (2006).
    [CrossRef]
  9. E. MacHale, G. Talli, C. Chow, and P. Townsend, “Reduction of signal-induced Rayleigh noise in a 10 Gb/s WDM-PON using a gain-saturated SOA,” in European Conference and Exhibition on Optical Communication (ECOC), (2007), Paper We.7.6.3.
  10. P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA-based WDM passive optical network,” J. Lightwave Technol.27(22), 4943–4953 (2009).
    [CrossRef]
  11. M. Fujiwara, H. Jun-ichi Kani, Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol.24(2), 740–746 (2006).
    [CrossRef]
  12. J. S. Jeong and C.-H. Lee, “Optical noise suppression techniques for wavelength-locked Fabry-Perot laser diode (Invited Paper),” in Asia-Pacific Conference on Communications (APCC), (2009), 592–596.
  13. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA,” J. Lightwave Technol.23(8), 2399–2409 (2005).
    [CrossRef]
  14. G. P. Agrawal, Fiber-Optics Communication Systems 3rd ed. (Wiley-Interscience, 2002).
  15. A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
    [CrossRef]
  16. Z. Al-Qazwini and H. Kim, “10-Gbps single-feeder, full-duplex WDM-PON using directly modulated laser and RSOA,” in Optical Fiber Communication Conference (OFC), (2012), paper OTh1F.5.

2010 (2)

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

H.-S. Kim, D. C. Kim, K.-S. Kim, B.-S. Choi, and O.-K. Kwon, “10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON,” Opt. Express18(22), 23324–23330 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

2006 (3)

2005 (1)

Alexandre, F.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Carpentier, D.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Chiuchiarelli, A.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Choi, B.-S.

Choudhury, P.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Ciaramella, E.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Contestabile, G.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Cotter, D.

G. Talli, D. Cotter, and P. D. Townsend, “Rayleigh backscattering impairments in access networks with centralised light source,” Electron. Lett.42(15), 877–878 (2006).
[CrossRef]

de Waardt, H.

Decobert, J.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Dupuis, N.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Fujiwara, M.

Garreau, A.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Giorgi, L.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Horak, P.

Ibsen, M.

Iwatsuki, K.

Jany, C.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Jun-ichi Kani, H.

Kazmierski, C.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Khoe, G. D.

Kim, D. C.

Kim, H.-S.

Kim, K.-S.

Koonen, A. M. J.

Kwon, O.-K.

Lagay, N.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Landreau, J.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

Martin, F.

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

McCoy, A. D.

Presi, M.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Proietti, R.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

Richardson, D. J.

Suzuki,

Talli, G.

G. Talli, D. Cotter, and P. D. Townsend, “Rayleigh backscattering impairments in access networks with centralised light source,” Electron. Lett.42(15), 877–878 (2006).
[CrossRef]

Thomsen, B. C.

Townsend, P. D.

G. Talli, D. Cotter, and P. D. Townsend, “Rayleigh backscattering impairments in access networks with centralised light source,” Electron. Lett.42(15), 877–878 (2006).
[CrossRef]

Urban, P. J.

Electron. Lett. (1)

G. Talli, D. Cotter, and P. D. Townsend, “Rayleigh backscattering impairments in access networks with centralised light source,” Electron. Lett.42(15), 877–878 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, N. Lagay, F. Martin, D. Carpentier, J. Landreau, and C. Kazmierski, “10-Gb/s AlGaInAs colorless remote amplified modulator by selective area growth for wavelength agnostic networks,” IEEE Photon. Technol. Lett.20(21), 1808–1810 (2008).
[CrossRef]

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photon. Technol. Lett.22(2), 85–87 (2010).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Other (8)

Z. Al-Qazwini and H. Kim, “10-Gbps single-feeder, full-duplex WDM-PON using directly modulated laser and RSOA,” in Optical Fiber Communication Conference (OFC), (2012), paper OTh1F.5.

D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in European Conference and Exhibition on Optical Communication (ECOC), (2009), Paper 8.6.3.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA Modulator for colourless optical source in WDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC), (2011), Paper Tu.5.LeSaleve.5.

M. J. Wale, “Options and trends for PON tunable optical transceivers,” in European Conference and Exhibition on Optical Communication (ECOC), (2011), Paper Mo.2.C.1.

C. Kazmierski, “Remote amplified modulators: key components for 10 Gb/s WDM PON,” in Optical Fiber Communication Conference (OFC), (2010), paper OWN6.

E. MacHale, G. Talli, C. Chow, and P. Townsend, “Reduction of signal-induced Rayleigh noise in a 10 Gb/s WDM-PON using a gain-saturated SOA,” in European Conference and Exhibition on Optical Communication (ECOC), (2007), Paper We.7.6.3.

J. S. Jeong and C.-H. Lee, “Optical noise suppression techniques for wavelength-locked Fabry-Perot laser diode (Invited Paper),” in Asia-Pacific Conference on Communications (APCC), (2009), 592–596.

G. P. Agrawal, Fiber-Optics Communication Systems 3rd ed. (Wiley-Interscience, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup to evaluate the impact of RBS crosstalk in 10-Gb/s REAM-SOA.

Fig. 2
Fig. 2

Optical spectra of incoherent seed light at three different points A, B, and C, as specified in Fig. 1.

Fig. 3
Fig. 3

BER performances of 10-Gb/s REAM-SOA when using three different incoherent lights.

Fig. 4
Fig. 4

BER performances and eye diagrams for several RBS crosstalk.

Fig. 5
Fig. 5

Variation of BER level as a function of RBS crosstalk.

Metrics