Abstract

There are still very strong interests for power scaling in high power fiber lasers for a wide range of applications in medical, industry, defense and science. In many of these lasers, fiber nonlinearities are the main limits to further scaling. Although numerous specific techniques have studied for the suppression of a wide range of nonlinearities, the fundamental solution is to scale mode areas in fibers while maintaining sufficient single mode operation. Here the key problem is that more modes are supported once physical dimensions of waveguides are increased. The key to solve this problem is to look for fiber designs with significant higher order mode suppression. In conventional waveguides, all modes are increasingly guided in the center of the waveguides when waveguide dimensions are increased. It is hard to couple a mode out in order to suppress its propagation, which severely limits their scalability. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses. In addition, the all-solid nature of the fiber makes it easily spliced to other fibers. In this paper, we will show for the first time that all-solid photonic bandgap fibers with effective mode area of ~920μm2 can be made with excellent higher order mode suppression.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378–380 (1997).
    [CrossRef] [PubMed]
  2. C. D. Brooks and F. Teodoro, “Multi-MW peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. (Berl.) 89, 111119 (2006).
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  4. P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
    [CrossRef]
  5. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  6. J. M. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005).
    [CrossRef] [PubMed]
  7. D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “33μm core effectively single-mode chirally-coupled-core fiber laser at 1064nm, ” Proc. of OFC (2008) paper OWU2.
  8. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
    [CrossRef]
  9. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [CrossRef] [PubMed]
  10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultra-large modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  11. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [CrossRef] [PubMed]
  12. J. Nicholson, “Higher-order-mode fiber amplifiers,” Proc. of LS&C (2010) paper LSWD1.
  13. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-microm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
    [CrossRef] [PubMed]
  14. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
    [CrossRef]
  15. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
    [CrossRef] [PubMed]
  16. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [CrossRef] [PubMed]
  17. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  18. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  19. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
    [CrossRef] [PubMed]
  20. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
    [CrossRef] [PubMed]
  21. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
    [CrossRef] [PubMed]
  22. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-lick onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

2010 (1)

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (1)

2006 (5)

2005 (3)

2000 (1)

1997 (1)

Argyros, A.

Bigot, L.

Bird, D. M.

Biriukov, A. S.

Birks, T. A.

Bouwmans, G.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Teodoro, “Multi-MW peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. (Berl.) 89, 111119 (2006).

Caplen, J. E.

Cordeiro, C. M. B.

Croteau, A.

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Denisov, A. N.

Dianov, E. M.

Dimarcello, F. V.

Dong, L.

Douay, M.

Egorova, O. N.

Eidam, T.

Ermeneux, S.

Fermann, M. E.

Fini, J. M.

Fu, L.

Fujimaki, M.

Gaponov, D. A.

Ghalmi, S.

Goldberg, L.

Gurianov, A. N.

Jansen, F.

Jauregui, C.

Kashiwagi, M.

Khopin, V. F.

Kliner, D. A.

Koplow, J. P.

Koshiba, M.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Kosolapov, A. F.

Kuksenkov, D. V.

Laperle, P.

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Leon-Saval, S. G.

Li, J.

Limpert, J.

Lopez, F.

Lyngsø, J. K.

Marcinkevicius, A.

Maruyama, H.

Matsuo, S.

McKay, H. A.

Monberg, E.

Murao, T.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Nicholson, J. W.

Ohta, M.

Olausson, C. B.

Otto, H. J.

Paré, C.

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Pearce, G. J.

Penty, R. V.

Provino, L.

Pryamikov, A. D.

Quiquempois, Y.

Ramachandran, S.

Richardson, D. J.

Rosa, L.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Röser, F.

Rothhardt, J.

Saitoh, K.

Salganskii, M. Y.

Salin, F.

Schmidt, O.

Schreiber, T.

Semjonov, S. L.

Shirakawa, A.

St. J. Russell, P.

Stutzki, F.

Suzuki, S.

Taillon, Y.

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Takenaga, K.

Tanigawa, S.

Taverner, D.

Teodoro, F.

C. D. Brooks and F. Teodoro, “Multi-MW peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. (Berl.) 89, 111119 (2006).

Thomas, B. K.

Tünnermann, A.

Ueda, K.

Williams, K.

Wirth, C.

Wisk, P.

Yablon, A. D.

Yan, M. F.

Yashkov, M. V.

Yvernault, P.

Zheng, H.

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Appl. Phys. (Berl.) (1)

C. D. Brooks and F. Teodoro, “Multi-MW peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. (Berl.) 89, 111119 (2006).

J. Lightwave Technol. (1)

Opt. Express (11)

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

J. M. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005).
[CrossRef] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-microm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[CrossRef] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
[CrossRef] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-lick onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol. 16(6), 409–418 (2010).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

P. Laperle, C. Paré, H. Zheng, A. Croteau, and Y. Taillon, “Yb-doped LMA triple-clad fiber laser,” Proc. SPIE 6343, 63430X (2006).
[CrossRef]

Other (2)

J. Nicholson, “Higher-order-mode fiber amplifiers,” Proc. of LS&C (2010) paper LSWD1.

D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “33μm core effectively single-mode chirally-coupled-core fiber laser at 1064nm, ” Proc. of OFC (2008) paper OWU2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Illustrations and parameter definitions of a seven-cell-core all-solid photonic bandgap fiber, and (b) photonic bandgaps of the cladding lattice (Δ = 2.07%).

Fig. 2
Fig. 2

From left to right, fundamental, second and third mode in the first bandgap of a 50μm core of an all-solid photonic bandgap fiber (Δ = 2.07%, Λ = 25.53μm, d = 1.069μm, d/Λ = 0.04186, 2ρ = 50μm, and λ = 1.06μm).

Fig. 3
Fig. 3

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 0.5%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 4
Fig. 4

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 1.0%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 5
Fig. 5

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 1.5%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 6
Fig. 6

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 2.0%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 7
Fig. 7

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 2.5%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 8
Fig. 8

The fundamental and 2nd order mode loses over the third bandgap for various Λ at Δ = 3.0%, λ = 1050nm, R = 15cm and N = 5. The two dotted lines indicate 0.1dB/m target for FM and 10dB/m target for the 2nd order mode.

Fig. 9
Fig. 9

Cross section photos of the two fabricated fibers.

Fig. 10
Fig. 10

Simulated effective area of Fiber 1 versus coil diameter.

Fig. 11
Fig. 11

(a) Loss of Fiber 1 at coiling diameters of 20cm, 30cm and 35cm and (b) loss of Fiber 2 measured with fiber in loose coil.

Fig. 12
Fig. 12

Near field pattern at the output of 2m of Fiber 1 coiled at 30cm while launch beam is moved slowly across the center of the fiber (sequence moving from left to right).

Fig. 13
Fig. 13

Power versus delay curves at intensity peak position of LP11 (solid black line) and LP02 (dotted red line) modes on the CCD respectively for coil diameter of 30cm. Insets show reconstructed modes by S2 measurements.

Fig. 14
Fig. 14

Resolved higher order modes in Fiber 2 at coil diameters of 30cm, 40cm and 50cm.

Fig. 15
Fig. 15

Relative LP11 and LP02 mode contents at various coiling diameters.

Fig. 16
Fig. 16

Measured PER in 6m Fiber 2 at coiling diameter of 50cm.

Tables (1)

Tables Icon

Table 1 Parameters of Fabricated Fibers

Metrics