Abstract

Chiral fields, i. e., electromagnetic fields with nonvanishing optical chirality, can occur next to symmetric nanostructures without geometrical chirality illuminated with linearly polarized light at normal incidence. A simple dipole model is utilized to explain this behavior theoretically. Illuminated with circularly polarized light, the chiral near-fields are still dominated by the distributions found for the linear polarization but show additional features due to the optical chirality of the incident light. Rotating the angle of linear polarization introduces more subtle changes to the distribution of optical chirality. Using our findings, we propose a novel scheme to obtain chiroptical far-field response using linearly polarized light, which could be utilized for applications such as optical enantiomer sensing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004), 2nd ed.
    [CrossRef]
  2. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006).
    [CrossRef] [PubMed]
  3. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
    [CrossRef] [PubMed]
  4. A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
    [CrossRef]
  5. Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012).
    [CrossRef] [PubMed]
  6. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
    [CrossRef]
  7. A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
    [CrossRef]
  8. A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
    [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
    [CrossRef] [PubMed]
  10. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
    [CrossRef] [PubMed]
  11. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
    [CrossRef] [PubMed]
  12. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
    [CrossRef] [PubMed]
  13. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007).
    [CrossRef] [PubMed]
  14. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34, 2501–2503 (2009).
    [CrossRef] [PubMed]
  15. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
    [CrossRef]
  16. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
    [CrossRef] [PubMed]
  17. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35, 1593–1596 (2010).
    [CrossRef] [PubMed]
  18. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
    [CrossRef]
  19. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
    [CrossRef] [PubMed]
  20. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
    [CrossRef] [PubMed]
  21. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
    [CrossRef] [PubMed]
  22. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  23. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
    [CrossRef]
  24. A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
    [CrossRef]
  25. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
    [CrossRef] [PubMed]
  26. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
    [CrossRef]
  27. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
    [CrossRef]
  28. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
    [CrossRef] [PubMed]
  29. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
    [CrossRef] [PubMed]
  30. J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
    [CrossRef] [PubMed]
  31. A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C115, 7914–7923 (2011).
    [CrossRef]
  32. V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
    [CrossRef] [PubMed]
  33. N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
    [CrossRef] [PubMed]
  34. A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012).
    [CrossRef] [PubMed]
  35. D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys.5, 696–674 (1964).
    [CrossRef]
  36. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010).
    [CrossRef] [PubMed]
  37. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011).
    [CrossRef] [PubMed]
  38. K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011).
    [CrossRef]
  39. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005).
    [CrossRef]
  40. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
    [CrossRef]
  41. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
    [CrossRef] [PubMed]
  42. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
    [CrossRef] [PubMed]
  43. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
    [CrossRef]
  44. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011).
    [CrossRef] [PubMed]
  45. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
    [CrossRef]
  46. E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
    [CrossRef] [PubMed]
  47. S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
    [CrossRef]
  48. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
    [CrossRef] [PubMed]
  49. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
    [CrossRef]
  50. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
    [CrossRef]
  51. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
    [CrossRef] [PubMed]
  52. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
    [CrossRef]
  53. J. D. Jackson, Classical Electrodynamics (Wiley-VCH, 1998), 3rd ed.
  54. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  55. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
    [CrossRef] [PubMed]
  56. N. Berova, K. Nakanishi, and R. W. Woody, eds., Circular Dichroism: Principles and Applications (Wiley-VCH, 2000), 2nd ed.

2012

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012).
[CrossRef] [PubMed]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

2011

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
[CrossRef]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011).
[CrossRef] [PubMed]

K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011).
[CrossRef]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C115, 7914–7923 (2011).
[CrossRef]

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011).
[CrossRef] [PubMed]

2010

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35, 1593–1596 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010).
[CrossRef] [PubMed]

2009

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34, 2501–2503 (2009).
[CrossRef] [PubMed]

2007

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

2006

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006).
[CrossRef] [PubMed]

2005

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005).
[CrossRef]

2003

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

1964

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys.5, 696–674 (1964).
[CrossRef]

Abdulrahman, N.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

Alonso-Gómez, J. L.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Ameloot, M.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Arakawa, Y.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005).
[CrossRef]

Auguié, B.

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D.

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Barron, L. D.

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004), 2nd ed.
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Bliokh, K.

K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011).
[CrossRef]

Braun, J.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

Braun, P. V.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Canfield, B. K.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Chen, Y.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Chigrin, D. N.

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
[CrossRef]

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011).
[CrossRef] [PubMed]

Christofi, A.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

Cid, M. M.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011).
[CrossRef] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010).
[CrossRef] [PubMed]

Coles, H.

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Davis, T. J.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

De Clercq, B.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Decker, M.

Defrancq, E.

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

Ding, B.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

Dressel, M.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

Duò, L.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Džolic, Z.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012).
[CrossRef] [PubMed]

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Fedotov, V.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Frölich, A.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

Gadegaard, N.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Gantzounis, G.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

Gérard, V. A.

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

Giessen, H.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

Gillijns, W.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Gippius, N. A.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

Gissibl, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

Gómez-Graña, S.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

Gompf, B.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

Govorov, A. O.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012).
[CrossRef] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012).
[CrossRef] [PubMed]

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C115, 7914–7923 (2011).
[CrossRef]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Granet, G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

Guerrero-Martínez, A.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

Gun’ko, Y. K.

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Halas, N.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Hecht, B.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Hendry, E.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Huang, J.-S.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Hübner, U.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Iwamoto, S.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley-VCH, 1998), 3rd ed.

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Kadodwala, M.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

Kauranen, M.

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Kelly, S.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Klein, M. W.

Kley, E. B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Klotzbücher, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

Konishi, K.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Kremers, C.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
[CrossRef]

Kriegler, C. E.

Kujala, S.

Kumagai, N.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Kuwata-Gonokami, M

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Laiho, K.

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Linden, S.

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

Lipkin, D. M.

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys.5, 696–674 (1964).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

Liu, X.-X.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005).
[CrossRef]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Moshchalkov, V. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Naik, R. R.

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Nomura, M.

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Nordlander, P.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

Nori, F.

K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Papanikolaou, N.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Plum, E.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Potts, A.

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S.

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Radke, A.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Savoini, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Schäferling, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

Shen, X.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Shi, D.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Silhanek, A. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Slocik, J. M.

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Smisdom, N.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Song, C.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Soukoulis, C.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Soukoulis, C. M.

Stefanou, N.

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Takahashia, S.

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011).
[CrossRef] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

Tonooka, T.

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

Tsai, D.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Tuennermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Turunen, J.

B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14, 950–955 (2006).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Valev, V. K.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, J.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Wang, Z.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

Wegener, M.

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A28, 238–244 (2011).
[CrossRef]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Xu, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Zayats, A. V.

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Zhang, S.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

Zhao, R.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35, 1593–1596 (2010).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N.

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

Zhou, J.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34, 2501–2503 (2009).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

Zhukovsky, S. V.

S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36, 2278–2280 (2011).
[CrossRef] [PubMed]

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
[CrossRef]

Žinic, M.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

Adv. Mater.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “3D Bichiral Plasmonic Crystals: Three-Dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating (Adv. Mater. 27/2011).” Adv. Mater.23, 2995–3021 (2011).
[CrossRef]

Angew. Chemie Int. Ed.

A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie Int. Ed.123, 5613–5617 (2011).
[CrossRef]

Appl. Phys. B

D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105, 81–97 (2011).
[CrossRef]

Appl. Phys. Lett.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett.100, 101109 (2012).
[CrossRef]

Chem. Comm.

V. A. Gérard, Y. K. Gun’ko, E. Defrancq, and A. O. Govorov, “Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.” Chem. Comm.47, 7383–7385 (2011).
[CrossRef] [PubMed]

Chem. Phys. Chem.

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.” Chem. Phys. Chem.13, 2551–2560 (2012).
[CrossRef] [PubMed]

Chem. Rev.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures.” Chem. Rev.111, 3913–3961 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.” J. Am. Chem. Soc.134, 146–149 (2012).
[CrossRef]

J. Appl. Phys

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys98, 011101 (2005).
[CrossRef]

J. Math. Phys.

D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys.5, 696–674 (1964).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. C

A. O. Govorov, “Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries,” J. Phys. Chem. C115, 7914–7923 (2011).
[CrossRef]

A. Christofi, N. Stefanou, G. Gantzounis, and N. Papanikolaou, “Giant optical activity of helical architectures of plasmonic nanorods,” J. Phys. Chem. C116, 16674–16679 (2012).
[CrossRef]

Nano Lett.

Z. Fan and A. O. Govorov, “Chiral nanocrystals: plasmonic spectra and circular dichroism.” Nano Lett.12, 3283–3289 (2012).
[CrossRef] [PubMed]

N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.” Nano Lett.12, 977–983 (2012).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E. B. Kley, A. Tuennermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures.” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers.” Nano Lett.12, 2542–2547 (2012).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory.” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, and T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits.” Nano Lett.12, 3640–3644 (2012).
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures.” Nano Lett.9, 3945–3948 (2009).
[CrossRef] [PubMed]

Nano Today

A. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, and L. M. Liz-Marzán, “From individual to collective chirality in metal nanoparticles,” Nano Today6, 381–400 (2011).
[CrossRef]

Nat. Commun.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.” Nat. Commun.3, 870 (2012).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation.” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using super-chiral fields.” Nat. Nanotechnol.5, 783–787 (2010).
[CrossRef] [PubMed]

Nat. Photon.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon.1, 641–648 (2007).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon.3, 157–162 (2009).
[CrossRef]

Nature

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Opt. Commun.

S. Takahashia, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field polarization conversion in planar chiral nanostructures,” Opt. Commun.255, 91 (2005).
[CrossRef]

Opt. Expr.

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Expr.17, 8051–8061 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

K. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A83, 021803 (2011).
[CrossRef]

Phys. Rev. B

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Phys. Rev. B.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B.80, 153409 (2009).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett.106, 185501 (2011).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97, 177401 (2006).
[CrossRef] [PubMed]

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011).
[CrossRef] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett.104, 163901 (2010).
[CrossRef] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett.107, 096801 (2011).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102, 113902 (2009).
[CrossRef] [PubMed]

Phys. Rev. X

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

Science

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light.” Science332, 333–336 (2011).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer.” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Other

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004), 2nd ed.
[CrossRef]

J. D. Jackson, Classical Electrodynamics (Wiley-VCH, 1998), 3rd ed.

N. Berova, K. Nakanishi, and R. W. Woody, eds., Circular Dichroism: Principles and Applications (Wiley-VCH, 2000), 2nd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical chirality induced by a linear plasmonic nanoantenna illuminated with light polarized parallel to the antenna axis under normal incidence at resonance (217 THz). The values have been normalized by the optical chirality of circularly polarized light. (b) The fundamental antenna mode exhibits strongest intensity of the electric field at the ends of the rod. The distribution differs significantly from the regions with strongest optical chirality.

Fig. 2
Fig. 2

Distribution of optical chirality near a dipole driven by an external field. A highly symmetric pattern is formed. The plot uses a nonlinear color scale to obtain better contrast.

Fig. 3
Fig. 3

Optical chirality induced by circularly polarized light near a linear plasmonic nanoantenna (a, c) compared to the dipole model (b, d). Slices were taken 30 nm before (blue border) and after (red border) the structure. The distribution of optical chirality is similar to the case of incident linearly polarized light (cf. Figs. 1(a) and 2) with some of the lobes being stronger for circularly polarized light. One can find a nice symmetry between incident left-handed (a, b) and right-handed (c, d) circularly polarized light as well as between the slices in front and behind the structure. The dipole model resembles the qualitative distribution of optical chirality very well. Nevertheless, some additional distortions occur at the front of the structure (also occuring in the plot in Fig. 1(a)) that cannot be explained by this simple model.

Fig. 4
Fig. 4

Optical chirality of a Hertzian dipole illuminated with linearly polarized light at a distance of z = 0.02λ behind the dipole. The distribution changes with increasing polarization angle. The white dashed lines are guides to the eye to see the rotation of the initial lobes of optical chirality.

Fig. 5
Fig. 5

(a) Using a square instead of the linear antenna yields similar results for incident light polarized in y-direction at a frequency of 268 THz. (b) When the orthogonal polarization is used, the incident light is still in resonance with the square which leads to the same pattern of optical chirality but rotatet by 90°. Note that the scale of the color bar is only half as big as for the linear antenna shown in Fig. 1(a). (c) When only two opposite corners are accessible by chiral molecules this geometry could be used for circular dichroism type measurements but with incident linearly polarized light to experimentally verify our theoretical findings. The close-up shows the calculated difference in optical chirality for the two different incident polarizations. Only one handedness of the chiral fields can be accessed.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

C = ε 0 ω 2 Im ( E * B ) ,
C CPL = ± ε 0 ω 2 c | E | 2 .
E in = E 0 J e i k z ,
B in = 1 c ( e z × E in ) .
E d ( r ) = 1 4 π ε 0 3 n ( p n ) p r 3 χ ,
B d ( r ) = μ 0 4 π i k c r 2 ( r × p ) χ .
χ = E in p | E in | e i π 2 .
C d = ε 0 ω 2 Im [ ( E in + E d ) * ( B in + B d ) ] = C in ε 0 ω 2 [ Im ( E in * B d ) + Im ( E d * B in ) ] .
C d lin = ε 0 ω 2 Im ( E d , x * B in , x ) .
E in 1 2 ( 1 ± i 0 ) and B in 1 2 1 c ( i 1 0 ) .
C d CPL = C d lin + C in CPL ε 0 ω 2 Im ( E in , x * B d , x ) .
C d φ = C d lin ε 0 ω 2 Im ( E d , y * B in , y ) .

Metrics