Abstract

A compact waveguide-type fan-out device for uncoupled multi-core fibers was demonstrated using a laminated polymer waveguide (LPW). The core spacing in the vertical direction was precisely controlled by the spin-coating of epoxy resin cladding with accurate viscosity control, while that in the lateral direction was determined precisely by using a photomask. The simultaneous coupling from the fan-out device to a seven-core MCF was successfully demonstrated. Next, we measured the offset loss characteristics of the cores of the LPW and calculated the spot size of the respective cores. The theoretical coupling losses evaluated from the spot size and the offset were as low as 0.2 – 7.5 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kokubun and M. Koshiba, “Novel fibers for space/mode-division multiplexing - proposal of homogeneous and heterogeneous multi-core fibers,” International Symposium EXAT2008 S1–3(2008).
  2. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).
  3. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express15(18), 11691–11697 (2007).
    [CrossRef] [PubMed]
  4. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express18(11), 11117–11122 (2010).
    [CrossRef] [PubMed]
  5. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” OFC2012, PDP5C.1 (2012).
  6. T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
    [CrossRef]
  7. T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
    [CrossRef]
  8. R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
    [CrossRef]

2010 (1)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).

2007 (1)

2001 (1)

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

1998 (1)

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

1996 (1)

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Akiyama, T.

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

Amano, M.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Barton, J. S.

Bookey, H. T.

Campbell, S.

Dimarcello, F. V.

Fender, A.

Fini, J. M.

Fishteyn, M.

Hikita, M.

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Inagaki, K.

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

Johnck, M.

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Kalveram, S.

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Kar, A. K.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).

Macpherson, W. N.

Monberg, E. M.

Neyer, A.

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Ohira, T.

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

Psaila, N. D.

Reid, D. T.

Rudolph, S.

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Saitoh, K.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).

Shuto, Y.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Taunay, T. F.

Thomson, R. R.

Tomaru, S.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Watanabe, T.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Wiesmann, R.

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

Yan, M. F.

Zhu, B.

Electron. Lett. (1)

R. Wiesmann, S. Kalveram, S. Rudolph, M. Johnck, and A. Neyer, “Singlemode polymer waveguides for optical backplanes,” Electron. Lett.32(25), 2329–2330 (1996).
[CrossRef]

ELEX (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” ELEX6(2), 98–103 (2009).

IEEE Trans. Microwave Theory Tech. (1)

T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two dimensional optical signal processing beamformer using multi-layer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech.49(10), 2055–2061 (2001).
[CrossRef]

J. Appl. Phys. (1)

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Opt. Express (2)

Other (2)

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” OFC2012, PDP5C.1 (2012).

Y. Kokubun and M. Koshiba, “Novel fibers for space/mode-division multiplexing - proposal of homogeneous and heterogeneous multi-core fibers,” International Symposium EXAT2008 S1–3(2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic view of LPW fan-out device.

Fig. 2
Fig. 2

Dispersion curve of rectangular waveguide.

Fig. 3
Fig. 3

Rotation speed dependence of thickness of PMMA.

Fig. 4
Fig. 4

Viscosity dependence of rotation speed of UV-cured epoxy resin for thickness of 39 μm.

Fig. 5
Fig. 5

Fabrication process of LPW.

Fig. 6
Fig. 6

Cross-sectional microscopic images. Figure 6(a) and 6(b) correspond to LPW and MCF.

Fig. 7
Fig. 7

Setup for measu ring spot size (SMF).

Fig. 8
Fig. 8

Measured results of offset loss and least-squares fitting. Figure 8(a)-8(g) correspond to core number #1-#7.

Fig. 9
Fig. 9

Setup for measuring insertion loss.

Fig. 10
Fig. 10

Theoretical offset loss, theoretical spot size mismatch loss, and measured insertion loss.

Tables (2)

Tables Icon

Table 1 Measured offset in x and y directions.

Tables Icon

Table 2 Spot size, spot size mismatch loss, and offset loss of individual cores.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h(t)= 1 4πf 3η ρt
α=10 log 10 ( 2 w 1 w 2 w 1 2 + w 2 2 )4.34( 2 δ 2 w 1 2 + w 2 2 ) [dB]
4.34( 2 δ 2 w SMF 2 + w LPW 2 )=a x 2

Metrics