Abstract

We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse of long wavelength. We demonstrate that both the confinement of the electron motion and the inhomogeneous character of the laser electric field play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In particular, in bow-tie nanostructures with small gaps, electron trajectories with large excursion amplitudes experience significant confinement and their contribution is essentially suppressed. In order to understand and characterize this feature, we combine the numerical solution of the time-dependent Schrödinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and classical tools to explain the extended harmonic spectra. The spatial inhomogeneity of the laser electric field modifies substantially the electron trajectories and contributes also to cutoff increase.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Quantum path interferences of electron trajectories in two-center molecules

Weifeng Yang, Xiaohong Song, Zhinan Zeng, Ruxin Li, and Zhizhan Xu
Opt. Express 18(3) 2558-2565 (2010)

High harmonic emission from a superposition of multiple unrelated frequency fields

T. Siegel, R. Torres, D. J. Hoffmann, L. Brugnera, I. Procino, A. Zaïr, Jonathan G. Underwood, E. Springate, I. C. E. Turcu, L. E. Chipperfield, and J. P. Marangos
Opt. Express 18(7) 6853-6862 (2010)

Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures

A. Husakou, F. Kelkensberg, J. Herrmann, and M. J. J. Vrakking
Opt. Express 19(25) 25346-25354 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
    [Crossref]
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [Crossref]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  4. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
    [Crossref]
  5. M. Lein, “Molecular imaging using recolliding electrons,” J. Phys. B 40(16), R135–R173 (2007).
    [Crossref]
  6. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
    [Crossref] [PubMed]
  7. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
    [Crossref] [PubMed]
  8. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  9. I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
    [Crossref]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  12. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
    [Crossref] [PubMed]
  13. A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
    [Crossref]
  14. I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
    [Crossref]
  15. M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
    [Crossref]
  16. T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
    [Crossref]
  17. M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
    [Crossref] [PubMed]
  18. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
    [Crossref]
  19. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photon. Rev. (in press) (2012).
    [Crossref]
  20. S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
    [Crossref]
  21. F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B 84(12), 121406(R) (2011).
  22. S. Zherebtsov and et al., “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
    [Crossref]
  23. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
    [Crossref] [PubMed]
  24. M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
    [Crossref]
  25. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
    [Crossref] [PubMed]
  26. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
    [Crossref]
  27. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
    [Crossref] [PubMed]
  28. P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
    [Crossref]
  29. A. L’Huillier and M. Lewenstein, “Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization,” Strong Field Laser Physics ed. T. Brabec, Springer Series in Optical Sciences (Springer, 2008).
  30. J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).
  31. Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44(9), 5997–6008 (1991).
    [Crossref] [PubMed]
  32. J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
    [Crossref] [PubMed]
  33. K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett. 78(4), 638–641 (1997).
    [Crossref]
  34. A. Thai, M. Hemmer, P. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrierenvelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
    [Crossref] [PubMed]
  35. S. S. Aćimović, “Introduction to nanoparticle characterization in COMSOL” (available from http://srdjancomsol.weebly.com , 2011).
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  37. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–441 (1946).
  38. C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
    [Crossref]
  39. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).
  40. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

2012 (7)

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
[Crossref]

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

2011 (7)

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

A. Thai, M. Hemmer, P. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrierenvelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
[Crossref] [PubMed]

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B 84(12), 121406(R) (2011).

S. Zherebtsov and et al., “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

2010 (2)

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
[Crossref]

2009 (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

2008 (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

2007 (2)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

M. Lein, “Molecular imaging using recolliding electrons,” J. Phys. B 40(16), R135–R173 (2007).
[Crossref]

2006 (1)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

2000 (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

1999 (1)

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

1997 (2)

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
[Crossref]

K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett. 78(4), 638–641 (1997).
[Crossref]

1994 (1)

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

1993 (1)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

1992 (1)

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
[Crossref] [PubMed]

1991 (1)

Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44(9), 5997–6008 (1991).
[Crossref] [PubMed]

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

1946 (1)

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–441 (1946).

Abel, B.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

Aghajani-Talesh, A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Altun, Z.

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Antoine, P.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photon. Rev. (in press) (2012).
[Crossref]

Balcou, P.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

Bates, P.

Biegert, J.

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

A. Thai, M. Hemmer, P. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrierenvelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
[Crossref] [PubMed]

Bleda, E. A.

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Chalus, O.

Chirila, C. C.

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

Choi, J.

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciappina, M. F.

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
[Crossref]

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Dreissigacker, I.

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

Durach, M.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Duwe, M.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

Eberly, J. H.

Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44(9), 5997–6008 (1991).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Förster, M.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–441 (1946).

Gulde, M.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hemmer, M.

Herink, G.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Herrmann, J.

A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
[Crossref]

Hommelhoff, P.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
[Crossref]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Husakou, A.

A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
[Crossref]

Im, S.-J.

A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Ivanov, M. Y.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, R. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

Kasevich, M. A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Keitel, C. H.

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Kim, D.-H. L. Y.-J.

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Kling, M. F.

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B 84(12), 121406(R) (2011).

Knight, P. L.

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
[Crossref]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Krause, J. L.

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
[Crossref] [PubMed]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Krüger, M.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
[Crossref]

Kulander, K. C.

K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett. 78(4), 638–641 (1997).
[Crossref]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
[Crossref] [PubMed]

L’Huillier, A.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

A. L’Huillier and M. Lewenstein, “Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization,” Strong Field Laser Physics ed. T. Brabec, Springer Series in Optical Sciences (Springer, 2008).

Lein, M.

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

M. Lein, “Molecular imaging using recolliding electrons,” J. Phys. B 40(16), R135–R173 (2007).
[Crossref]

Lewenstein, M.

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

A. L’Huillier and M. Lewenstein, “Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization,” Strong Field Laser Physics ed. T. Brabec, Springer Series in Optical Sciences (Springer, 2008).

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Moll, K. D.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Pérez-Hernández, J. A.

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Protopapas, M.

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
[Crossref]

Quidant, R.

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photon. Rev. (in press) (2012).
[Crossref]

Ropers, C.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Roso, L.

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Rusina, A.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Salières, P.

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

Schafer, K. J.

K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett. 78(4), 638–641 (1997).
[Crossref]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
[Crossref] [PubMed]

Schenk, M.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
[Crossref]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Scrinzi, A.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Shaaran, T.

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
[Crossref]

Sivis, M.

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

Solli, D. R.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

Sortais, Y.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Stebbings, S. L.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Stockman, M. I.

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Su, Q.

Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44(9), 5997–6008 (1991).
[Crossref] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Süßmann, F.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B 84(12), 121406(R) (2011).

Thai, A.

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

Topcu, T.

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

van der Zwan, E. V.

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

Yang, Y-Y.

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Yavuz, I.

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

Ye, J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

Zaïr, A.

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Zherebtsov, S.

S. Zherebtsov and et al., “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Advances in Atomic, Molecular and Optical Physics (1)

P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,“Study of the spatial and temporal coherence of high-order harmonics,” Advances in Atomic, Molecular and Optical Physics, eds. B. Bederson and H. Walther 41, 83–142 (1999).
[Crossref]

J. Inst. Electr. Eng. (1)

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429–441 (1946).

J. Phys. B (2)

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45(7), 074006 (2012).
[Crossref]

M. Lein, “Molecular imaging using recolliding electrons,” J. Phys. B 40(16), R135–R173 (2007).
[Crossref]

Nat. Phot. (1)

I.-Y. Park, S. Kim, J. Choi, D.-H. L. Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Phot. 5(11), 677–681 (2011).
[Crossref]

Nat. Phys. (2)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

S. Zherebtsov and et al., “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7(8), 656–662 (2011).
[Crossref]

Nature (5)

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483(7388), 190–193 (2012).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475(7354), 78–81 (2011).
[Crossref] [PubMed]

M. Sivis, M. Duwe, B. Abel, and C. Ropers, “Nanostructure-enhanced atomic line emission,” Nature 485(7397), E1–E3 (2012).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “Kim et al. reply,” Nature 485(7397), E1–E3 (2012).
[Crossref]

New Journal of Physics (1)

S. L. Stebbings, F. Süßmann, Y-Y. Yang, A. Scrinzi, M. Durach, A. Rusina, M. I. Stockman, and M. F. Kling, “Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids,”, New Journal of Physics 13(7), 073010 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (8)

C. C. Chirilă, I. Dreissigacker, E. V. van der Zwan, and M. Lein, “Emission times in high-order harmonic generation,” Phys. Rev. A 81(3), 033412 (2010).
[Crossref]

Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Phys. Rev. A 44(9), 5997–6008 (1991).
[Crossref] [PubMed]

J. L. Krause, K. J. Schafer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45(7), 4998–5010 (1992).
[Crossref] [PubMed]

A. Husakou, S.-J. Im, and J. Herrmann, “Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases,” Phys. Rev. A 83(4), 043839 (2011).
[Crossref]

I. Yavuz, E. A. Bleda, Z. Altun, and T. Topcu, “Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields,” Phys. Rev. A 85(1), 013416 (2012).
[Crossref]

M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein, “High-order-harmonic generation from inhomogeneous fields,” Phys. Rev. A 85(3), 033828 (2012).
[Crossref]

T. Shaaran, M. F. Ciappina, and M. Lewenstein, “Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement,” Phys. Rev. A 86(2), 023408 (2012).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49(3) 2117–2132 (1994).
[Crossref] [PubMed]

Phys. Rev. B (2)

F. Süßmann and M. F. Kling, “Attosecond nanoplasmonic streaking of localized fields near metal nanospheres,”, Phys. Rev. B 84(12), 121406(R) (2011).

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (6)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105(2), 257601 (2010).
[Crossref]

K. J. Schafer and K. C. Kulander, “High harmonic generation from ultrafast pump lasers,” Phys. Rev. Lett. 78(4), 638–641 (1997).
[Crossref]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19) 193201 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60(4), 389–486 (1997).
[Crossref]

Rev. Mod. Phys. (2)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Sov. Phys. JETP (2)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Other (4)

S. S. Aćimović, “Introduction to nanoparticle characterization in COMSOL” (available from http://srdjancomsol.weebly.com , 2011).

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser & Photon. Rev. (in press) (2012).
[Crossref]

A. L’Huillier and M. Lewenstein, “Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization,” Strong Field Laser Physics ed. T. Brabec, Springer Series in Optical Sciences (Springer, 2008).

J. A. Pérez-Hernández, M. F. Ciappina, M. Lewenstein, L. Roso, and A. Zaïr, “Beyond Carbon K-edge harmonic emission using spatial and temporal synthesized laser field,”, arXiv:1207.4653v1 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the geometry of the considered nanostructure. A gold bow-tie antenna resides on glass substrate (refractive index n = 1.52) with superstate medium of air (n = 1). The characteristic dimensions of the system and the coordinate system used in the 1D-TDSE simulations are shown.

Fig. 2
Fig. 2

High-order harmonic generation (HHG) spectra for Ar with ionization potential GS = −0.58 a.u., laser wavelength λ = 1800 nm and intensity I = 8 × 1013 W·cm−2 at the center of the gap x = 0. We use a trapezoidal shaped pulse, Eq. (7), with non = 3, noff = 3 and np = 4 (about 60 fs). The gold bow-tie nanostructure has a gap g = 12 nm (226 a.u.). The black line indicates the homogeneous case while the red line indicates the nonhomogeneous case. The arrow indicates the cutoff predicted by the semiclassical model for the homogeneous case [7]. The top left inset shows the functional form of the electric field E(x,t), where the solid lines are the raw data obtained from the finite element simulations and the dashed line is a nonlinear fitting. The top right inset shows the intensity enhancement in the gap region of the gold bow-tie nanostructure.

Fig. 3
Fig. 3

Idem Fig. 2, except that now the gold bow-tie nanostructure has a gap g of 15 nm (283 a.u.) and the laser intensity is I = 1.25 × 1014 W·cm−2 at the center of the gap x = 0.

Fig. 4
Fig. 4

Gabor analysis for the harmonic spectra of Figs. 2 and 3. Panels (a) and (b) correspond to the Fig. 2 for the homogeneous and nonhomogeneous case, respectively. While panels (c) and (d) correspond to the Fig. 3 for the homogeneous and nonhomogeneous case, respectively. In all panels, the zoomed regions show a time interval during the laser pulse (Ref. [38] for details).

Fig. 5
Fig. 5

Total energy of the free electron (in terms of the harmonic order) in the laser field when it recollides with its parent ion obtained from Newton’s second law and plotted as a function of the ionization time (green filled circles) or the recollision time (red open circles). Panel (a) homogeneous case without restriction in the electron motion, (b) non-homogeneous case without restriction in the electron motion, (c) idem (a) restricting the electron motion to the region [−α0, α0] and (d) idem (b) restricting the electron motion to the region [−α0, α0]. The laser parameters are I = 8 × 1013 W·cm−2, λ = 1800 nm and a trapezoidal shaped pulse with non = 3, np = 4 and noff = 3. The nonhomogeneous electric field is that corresponding to a bow-tie shaped nanostructure with g = 12 nm.

Fig. 6
Fig. 6

Idem Fig. 5 but with I = 1.25 × 1014 W·cm−2 and the nonhomogeneous electric field is that corresponding to a bow-tie shaped nanostructure with g = 15 nm.

Fig. 7
Fig. 7

Dependence of the semiclassical trajectories on the ionization and recollision times. Non confined case panel (a); confined case panel (b). Blue squares ( oe----i001.gif), homogeneous case; red circles ( oe----i002.gif) nonhomogeneous case. The laser parameters are I = 8×1013 W·cm−2, λ = 1800 nm and a trapezoidal pulse with non = 3, np = 4 and noff = 3. The nonhomogeneous electric field is that corresponding to a bow-tie shaped nanostructure with g = 12 nm.

Fig. 8
Fig. 8

Idem Fig. 7 but with I = 1.25 × 1014 W·cm−2. The nonhomogeneous electric field is that corresponding to a bow-tie shaped nanostructure with g = 15 nm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

i Ψ ( x , t ) t = ( t ) Ψ ( x , t )
= [ 1 2 2 x 2 + V atom ( x ) + V laser ( x , t ) ] Ψ ( x , t )
V atom ( x ) = 1 x 2 + ξ 2
V laser ( x , t ) = E ( x , t ) x .
E ( x , t ) = E 0 f ( t ) ( 1 + h ( x ) ) sin ω t ,
h ( x ) = i = 1 N b i x i
f ( t ) = { t t 1 for 0 t < t 1 1 for t 1 t t 2 ( t t 3 ) ( t 3 t 2 ) for t 2 < t t 3 0 elsewhere
D ( ω ) = | 1 τ 1 ω 2 d t e i ω t a ( t ) | 2
a ( t ) = d 2 x d t 2 = Ψ ( t ) | [ ( t ) , [ ( t ) , x ] ] | Ψ ( t ) .
a G ( Ω , t ) = d t a ( t ) exp [ ( t t 2 / 2 σ 2 ] σ 2 π exp ( i Ω t )
n c = ( 3.17 U p + I p ) / ω
x ( t 0 ) = 0
x ˙ ( t 0 ) = 0 .
x ( t 1 ) = 0 .
E k ( t 1 ) = x ˙ ( t 1 ) 2 2
x ¨ ( t ) = x V laser ( x , t ) = E ˜ ( x , t )

Metrics