Abstract

This paper presents the optically controllable light scattering based on dye-doped liquid crystals (DDLCs) in a cell, whose substrates are coated with poly(N-vinylcarbazole) (PVK) films. The optical control mechanism is the light-induced dissolution of PVK in DDLCs, which reforms the disordered LC distribution into multiple and micron-sized LC domains. The induced thermal effect on the process is investigated in detail. Scanning electron microscopy images are obtained to show the surface structures of the produced PVK films. The generated scattering can be switched back to the original one by particular thermally induced phase separation. Results indicate that the light-induced thermal effect and photoisomerization lead to the dissolution of PVK in DDLCs. Finally, scattering mode light shutter with different transmission is successfully achieved by illuminating the cell under various light intensities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shian Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011).
    [CrossRef] [PubMed]
  2. C. T. Wang, H. C. Jau, and T. H. Lin, “Optically controllable bistable reflective liquid crystal display,” Opt. Lett.37(12), 2370–2372 (2012).
    [CrossRef] [PubMed]
  3. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
    [CrossRef]
  4. S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
    [CrossRef]
  5. R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
    [CrossRef]
  6. Y. C. Hsiao, C. T. Hou, V. Y. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express19(24), 23952–23957 (2011).
    [CrossRef] [PubMed]
  7. S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).
  8. J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
    [CrossRef] [PubMed]
  9. A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
    [CrossRef]
  10. Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express20(15), 16777–16784 (2012).
    [CrossRef]
  11. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Appl. Opt.32(28), 5481–5491 (1993).
    [CrossRef] [PubMed]
  12. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt.32(28), 5475–5480 (1993).
    [CrossRef] [PubMed]
  13. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
    [CrossRef]
  14. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
    [CrossRef]
  15. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
    [CrossRef]
  16. P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
    [CrossRef] [PubMed]
  17. H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011).
    [CrossRef] [PubMed]
  18. P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
    [CrossRef] [PubMed]
  19. W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
    [CrossRef]
  20. H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
    [CrossRef]
  21. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
    [CrossRef]
  22. T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
    [CrossRef]
  23. A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett.17(6), 441–443 (1992).
    [CrossRef] [PubMed]
  24. N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
    [CrossRef] [PubMed]
  25. P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
    [CrossRef]
  26. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
    [CrossRef]
  27. A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).
  28. N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
    [CrossRef]
  29. A. Y. G. Fuh, H. C. Lin, T. S. Mo, and C. H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express13(26), 10634–10641 (2005).
    [CrossRef] [PubMed]

2012 (4)

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

C. T. Wang, H. C. Jau, and T. H. Lin, “Optically controllable bistable reflective liquid crystal display,” Opt. Lett.37(12), 2370–2372 (2012).
[CrossRef] [PubMed]

Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express20(15), 16777–16784 (2012).
[CrossRef]

2011 (5)

H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011).
[CrossRef] [PubMed]

M. Shian Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011).
[CrossRef] [PubMed]

Y. C. Hsiao, C. T. Hou, V. Y. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express19(24), 23952–23957 (2011).
[CrossRef] [PubMed]

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

2009 (2)

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

2006 (2)

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
[CrossRef]

2005 (1)

2004 (3)

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

2002 (1)

J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
[CrossRef] [PubMed]

2001 (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
[CrossRef]

1998 (1)

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

1997 (2)

W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

1996 (1)

T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
[CrossRef]

1993 (3)

1992 (1)

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

1978 (1)

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Afzali-Ardakani, A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

Amra, C.

Arakelian, S. M.

T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
[CrossRef]

Bao, R.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Blau, W. J.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Böhm, N.

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

Brady, D. J.

Bussière, P. O.

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

Chang, C. J.

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

Chen, A. G.

Chen, C. H.

Chen, Y.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Chen, Y. D.

Cheng, K. T.

Chiang, J. T.

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

Chien, Y. S.

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

Cowling, S. J.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

Dierking, I.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

Drnoyan, V. E.

T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
[CrossRef]

Duparré, A.

Froufe-Pérez, L. S.

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

Fuh, A. Y. G.

Y. D. Chen, A. Y. G. Fuh, and K. T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express20(15), 16777–16784 (2012).
[CrossRef]

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

M. Shian Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011).
[CrossRef] [PubMed]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
[CrossRef]

A. Y. G. Fuh, H. C. Lin, T. S. Mo, and C. H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express13(26), 10634–10641 (2005).
[CrossRef] [PubMed]

Galstyan, T. V.

T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
[CrossRef]

García, P. D.

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

Gardette, J. L.

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Goodby, J. W.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

Hall, A. W.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

Held, G. A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

Hervet, H.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Hiraoka, H.

W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
[CrossRef]

Hongawa, K.

J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
[CrossRef]

Hou, C. T.

Hrozhyk, U.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Hsiao, Y. C.

Hsu, H. K.

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Huang, S. Y.

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
[CrossRef]

Jau, H. C.

C. T. Wang, H. C. Jau, and T. H. Lin, “Optically controllable bistable reflective liquid crystal display,” Opt. Lett.37(12), 2370–2372 (2012).
[CrossRef] [PubMed]

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Jewell, S. A.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

Kassam, S.

Kido, J.

J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
[CrossRef]

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
[CrossRef]

Kim, J. H.

J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
[CrossRef] [PubMed]

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
[CrossRef]

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

Lee, W.

Li, M. S.

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Li, P.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Lian, C.

Lin, H. C.

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

A. Y. G. Fuh, H. C. Lin, T. S. Mo, and C. H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express13(26), 10634–10641 (2005).
[CrossRef] [PubMed]

Lin, T. H.

Liu, C. M.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Liu, Y.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

López, C.

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

Materny, A.

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
[CrossRef]

Mo, T. S.

Müller, M. M.

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

Nagai, K.

J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
[CrossRef]

Namdar, A.

A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).

Niu, L.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Okuyama, K.

J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
[CrossRef]

Pelcovits, R. A.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

Rivaton, A.

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

Rondelez, F.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Sambles, J. R.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

Sapienza, R.

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

Schottner, G.

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

Serak, S.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Shian Li, M.

Steins, H.

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Sun, X.

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Tabiryan, N.

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Tajalli, H.

A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).

Thérias, S.

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

Ting, C. L.

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Tung, T. C.

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Urbach, W.

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

Wang, C. T.

Wang, J.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Wong, T. M.

W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
[CrossRef]

Wong, W. Y. Y.

W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
[CrossRef]

Wu, S. T.

M. Shian Li, A. Y. G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011).
[CrossRef] [PubMed]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
[CrossRef]

Yang, D. K.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

Yokoyama, H.

J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
[CrossRef] [PubMed]

Yoneya, M.

J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
[CrossRef] [PubMed]

Zhang, J.

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Zhang, J. W.

Zhao, H.

Zyryanov, V. Y.

Appl. Opt. (2)

Appl. Phys. B (1)

S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B104(1), 93–97 (2011).
[CrossRef]

Appl. Phys. Express (2)

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express2(11), 112401 (2009).
[CrossRef]

A. Y. G. Fuh, J. T. Chiang, Y. S. Chien, C. J. Chang, and H. C. Lin, “Multistable phase-retardation plate based on gelator-doped liquid crystals,” Appl. Phys. Express5(7), 072503 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N‐vinylcarbazole),” Appl. Phys. Lett.63(19), 2627–2629 (1993).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett.88(25), 251113 (2006).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

W. Y. Y. Wong, T. M. Wong, and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys., A Mater. Sci. Process.65(4-5), 519–523 (1997).
[CrossRef]

J. Appl. Phys. (2)

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys.81(7), 3007–3014 (1997).
[CrossRef]

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys.95(5), 2246–2249 (2004).

J. Chem. Phys. (1)

H. Hervet, W. Urbach, and F. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys.68(6), 2725–2729 (1978).
[CrossRef]

J. Phys. Chem. B (1)

P. O. Bussière, A. Rivaton, S. Thérias, and J. L. Gardette, “Multiscale investigation of the poly(N-vinylcarbazole) photoageing mechanism,” J. Phys. Chem. B116(2), 802–812 (2012).
[CrossRef] [PubMed]

Laser Phys. (1)

A. Namdar and H. Tajalli, “Photoinduced dichroism in the films of DSR1-doped PMMA polymer,” Laser Phys.14, 1520–1523 (2004).

Macromolecules (1)

N. Böhm, A. Materny, H. Steins, M. M. Müller, and G. Schottner, “Optically induced dichroism and birefringence of disperse red 1 in hybrid polymers,” Macromolecules31(13), 4265–4271 (1998).
[CrossRef]

Nanotechnology (1)

P. Li, L. Niu, Y. Chen, J. Wang, Y. Liu, J. Zhang, and W. J. Blau, “In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes,” Nanotechnology22(1), 015204 (2011).
[CrossRef] [PubMed]

Nature (2)

J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002).
[CrossRef] [PubMed]

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Lett. A (1)

T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A217(1), 52–58 (1996).
[CrossRef]

Phys. Rev. B (1)

P. D. García, R. Sapienza, L. S. Froufe-Pérez, and C. López, “Strong dispersive effects in the light-scattering mean free path in photonic gaps,” Phys. Rev. B79(24), 241109 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

N. Tabiryan, U. Hrozhyk, and S. Serak, “Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,” Phys. Rev. Lett.93(11), 113901 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE4214, 26–37 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experiment setup for the optical modulation of the scattering performance. The diameter of the illuminated spot is ~3 mm. (b) Transmittances of the stable scattering modes, which were achieved under different green light intensities. The probed beam is a He-Ne laser beam.

Fig. 2
Fig. 2

Temperature variations as a function of the duration of green light illumination onto the scattering DDLCs cell. The cell was fabricated using two non-rubbing PVK-coated glass substrates after thermal treatment via particular TIPS processes.

Fig. 3
Fig. 3

SEM images of DDLCs cells before and after treatment with light-induced PVK dissolution based on DDLCs scattering as a result of particular TIPS processes: (a) morphologies of the initial thermally treated PVK film (no light illumination). The intensities of the green light irradiated onto the scattering DDLCs cell are (b) 0.92, (c) 0.97, (d) 1.02, (e) 1.07, (f) 1.12, (g) 1.17, and (h) 1.22 W/cm2.

Fig. 4
Fig. 4

Images of the optically controllable multistable light shutter based on the DDLCs sample. The intensities of the green light are (a) 0.97, (b) 1.07, and (c) 1.22 W/cm2. The areas marked by the white dotted lines are the illuminated areas with diameters of ~3 mm.

Fig. 5
Fig. 5

POM images of DDLCs cells after treatment with light-induced dissolution of PVK based on DDLCs cell as a result of particular TIPS processes. The green light intensities are (a) 0.97, (b) 1.07, and (c) 1.22 W/cm2.

Fig. 6
Fig. 6

The blue squares and red circles show the scattering performances as a function of the polarization state of the probe beam based on the optically treated DDLCs cell under 1.07 and 1.22 W/cm2 intensities of green light illuminated onto the DDLCs cell, respectively. The insets show the scattering patterns, when the polarized laser beam with (a) [(c)] 0° and (b) [(d)] 90° polarization (normally incident), penetrates through the DDLC cell corresponding to Figs. 3(e) and 3(h). The red and green arrows present the polarizations of red and green light, respectively.

Metrics