Abstract

We present a characterization of the spectral modulation and wavelength shifting induced via cross-phase modulation (XPM) in a hydrogenated amorphous silicon (a-Si:H) core optical fiber. Pump-probe experiments using picosecond and femtosecond signal pulses are shown to be in good agreement with numerical simulations of the coupled nonlinear propagation equations. The large 10nm red-shifts obtained with the femtosecond probe pulses are attributed to the high Kerr nonlinearity of the a-Si:H material. Extinction ratios as high as 12dB are measured for the conversion process at telecommunications wavelengths, indicating the potential for high-speed nonlinear optical control in a-Si:H fibers and waveguides.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
    [CrossRef] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802–7809 (2007).
    [CrossRef] [PubMed]
  3. F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
    [CrossRef] [PubMed]
  4. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [CrossRef]
  5. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
    [CrossRef] [PubMed]
  6. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19, B146–B153 (2011).
    [CrossRef]
  7. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
    [CrossRef] [PubMed]
  8. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [CrossRef] [PubMed]
  9. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
    [CrossRef]
  10. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
    [CrossRef]
  11. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [CrossRef]
  12. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
    [CrossRef] [PubMed]
  13. N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
    [CrossRef]
  14. A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett. 37, 3351–3353 (2012).
    [CrossRef]
  15. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
    [CrossRef] [PubMed]
  16. E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
    [CrossRef]
  17. H. Hsieh, K. Feng, and M. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express 18, 9613–9621 (2010).
    [CrossRef] [PubMed]
  18. I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146 (2007).
    [CrossRef] [PubMed]
  19. T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
    [CrossRef]
  20. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [CrossRef]
  21. P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
    [CrossRef] [PubMed]
  22. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [CrossRef] [PubMed]

2012 (4)

2011 (3)

2010 (5)

2009 (2)

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

2004 (1)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Agrawal, G. P.

Badding, J. V.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

Baets, R.

Ballato, J.

Baril, N. F.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

Ben Bakir, B.

Borhan, A.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

Boyraz, O.

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[CrossRef] [PubMed]

Carletti, L.

Chen, X.

Clemmen, S.

Corcoran, B.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Dadap, J. I.

Daw, M.

Day, T. D.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

Dekker, R.

Densmore, A.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[CrossRef] [PubMed]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Driessen, A.

Eggleton, B. J.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Ellison, M.

Fedeli, J. M.

Feng, K.

Först, M.

Foster, M. A.

Foy, P.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Gaeta, A. L.

Galili, M.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Geraghty, D. F.

Gopalan, V.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

Grillet, C.

Grosse, P.

Hasama, T.

Hawkins, T.

He, R.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

Healy, N.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett. 37, 3351–3353 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

Horak, P.

Hsieh, H.

Hsieh, I.

Hu, H.

Ishikawa, H.

Itoga, E.

Jalali, B.

Janz, S.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[CrossRef] [PubMed]

Jeppesen, P.

Ji, H.

Kamei, T.

Kawashima, H.

Keshavarzi, B.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

Kintaka, K.

Kokuoz, B.

Koonath, P.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Krishnamurthi, M.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

Kuyken, B.

Lee, M. M.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Li, F.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Lipson, M.

Ma, R.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[CrossRef] [PubMed]

Massar, S.

McMillen, C.

McNab, S. J.

Mehta, P.

Menezo, S.

Monat, C.

Moormann, C.

Mori, M.

Morthier, G.

Moss, D. J.

Nakanishi, K.

Namiki, S.

Niehusmann, J.

Ogasawara, T.

Okano, M.

Osgood, R. M.

Oxenløwe, L. K.

Panoiu, N. C.

Peacock, A. C.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

A. C. Peacock, P. Mehta, P. Horak, and N. Healy, “Nonlinear pulse dynamics in multimode silicon core optical fibers,” Opt. Lett. 37, 3351–3353 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

Pelusi, M.

Pelusi, M. D.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Petrovich, M. N.

Powers, D. R.

Pu, M.

Qing, F.

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Raghunathan, V.

Rao, A. M.

Reppert, J.

Rice, R. R.

Roelkens, G.

Sakakibara, Y.

Salem, R.

Sang, X.

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

Sazio, P. J. A.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

Schröder, J.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Selvaraja, S. K.

Sharma, S.

Shoji, Y.

Shori, R.

Song, Q.

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

Sparks, J. R.

Stafsudd, O.

Stolen, R.

Suda, S.

Takei, R.

Tanizawa, K.

Tien, E.

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

Turner, A. C.

Vlasov, Y. A.

Vo, T. D.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Wahlbrink, T.

Xu, D.

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

Xu, D-X.

Yin, L.

Appl. Phys. Lett. (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

E. Tien, X. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett. 95, 051101 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[CrossRef]

J. Lightwave Tech. (1)

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals,” J. Lightwave Tech. 29, 1790–1796 (2011).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Nat. Photon. (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Opt. Express (13)

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef] [PubMed]

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express 19, 19078–19083 (2011).
[CrossRef] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19, B146–B153 (2011).
[CrossRef]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802–7809 (2007).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160,Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[CrossRef] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 16, 16826–16831 (2010).
[CrossRef]

H. Hsieh, K. Feng, and M. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express 18, 9613–9621 (2010).
[CrossRef] [PubMed]

I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146 (2007).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Pump-probe experiment for XPM. (b) Picosecond probe spectrogram.

Fig. 2
Fig. 2

Measured XPM probe spectra (red curves) compared to simulations (blue curves) for a range of temporal delays Δt.

Fig. 3
Fig. 3

(a) Femtosecond probe spectrogram. (b) Peak wavelength shifting of measured (red curve) and simulated (blue curve) XPM.

Fig. 4
Fig. 4

(a) Femtosecond probe input pulse. (b) Measured spectra at the maximum wavelength shifting showing the extinction ratios for the conversion.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A p z + β 1 p A p t + i β 2 p 2 2 A p t 2 = i ( γ p , p | A p | 2 + 2 γ p , s | A s | 2 ) A p 1 2 ( α + σ f p ) A p ,
A s z + β 1 s A s t + i β 2 s 2 2 A s t 2 = i ( γ s , s | A s | 2 + 2 γ s , p | A p | 2 ) A s 1 2 ( α + σ f s ) A s ,
N t = 1 2 h A eff 2 [ β TPA p , p ν p | A p | 4 + β TPA s , s ν s | A s | 2 + 2 β TPA p , s ν p | A p A s | 2 + 2 β TPA s , p ν s | A s A p | 2 ] N τ .

Metrics