Abstract

Simple Nb2O5, ZrO2, SiO2 oxide coatings and their mixtures with SiO2 have been prepared by the Ion Beam Sputtering (IBS) technique. The Laser-Induced Damage of these samples has been studied at 1064 nm, 12 ns. The laser induced damage threshold (LIDT) decreases in both sets of the mixtures with the volumetric fraction of high index material. We find that the nanosecond LIDT of the mixtures is related to the band gap of the material as it has been widely observed in the subpicosecond regime. The laser damage probability curves have been fitted firstly by a statistical approach, i.e. direct calculation of damage precursor density from damage probability and secondly by a thermal model based on absorption of initiator. The distributions of damage precursors versus fluence extracted from these fittings show a good agreement. The thermal model makes it possible to connect damage probability to precursor physical properties. A metallic defect with a maximum radius of 18 nm was proposed to the interpretation. The critical temperature in the laser damage process exhibited a dependence on the band-gap of the material.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, USA, 2010).
  2. S. Chao, W. H. Wang, and C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films,” Appl. Opt.40(13), 2177–2182 (2001).
    [CrossRef] [PubMed]
  3. B. J. Pond, J. I. Debar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt.28(14), 2800–2805 (1989).
    [CrossRef] [PubMed]
  4. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002).
    [CrossRef]
  5. M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
    [CrossRef]
  6. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
    [CrossRef]
  7. D. W. Zhang, Y. S. Huang, Z. J. Ni, S. L. Zhuang, J. D. Shao, and Z. X. Fan, “Preparation of high laser induced damage threshold antireflection film using interrupted ion assisted deposition,” Opt. Express15(17), 10753–10760 (2007).
    [CrossRef] [PubMed]
  8. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).,” Opt. Express20(10), 11561–11573 (2012).
    [CrossRef] [PubMed]
  9. D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
    [CrossRef]
  10. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express17(15), 12269–12278 (2009).
    [CrossRef] [PubMed]
  11. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt.50(9), C188–C196 (2011).
    [CrossRef] [PubMed]
  12. M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
    [CrossRef]
  13. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt.47(29), 5272–5280 (2008).
    [CrossRef] [PubMed]
  14. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
    [CrossRef] [PubMed]
  15. L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
    [CrossRef]
  16. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
    [CrossRef]
  17. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008).
    [CrossRef]
  18. R. H. Picard, D. Milam, and R. A. Bradbury, “Statistical analysis of defect-caused laser damage in thin films,” Appl. Opt.16(6), 1563–1571 (1977).
    [CrossRef] [PubMed]
  19. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt.23(21), 3796–3805 (1984).
    [CrossRef] [PubMed]
  20. J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
    [CrossRef]
  21. D. R. Lide, Handbook of Chemistry and Physics, 87th ed. (CRC press, USA 2007).
  22. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt.50(9), C188–C196 (2011).
[CrossRef] [PubMed]

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

2009 (2)

2008 (3)

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008).
[CrossRef]

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt.47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

2007 (2)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

D. W. Zhang, Y. S. Huang, Z. J. Ni, S. L. Zhuang, J. D. Shao, and Z. X. Fan, “Preparation of high laser induced damage threshold antireflection film using interrupted ion assisted deposition,” Opt. Express15(17), 10753–10760 (2007).
[CrossRef] [PubMed]

2004 (2)

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

2002 (1)

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002).
[CrossRef]

2001 (2)

M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
[CrossRef]

S. Chao, W. H. Wang, and C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films,” Appl. Opt.40(13), 2177–2182 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

1989 (1)

1984 (1)

1977 (1)

1973 (1)

J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
[CrossRef]

Alvisi, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Blaschke, H.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
[CrossRef]

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Bradbury, R. A.

Bude, J. D.

Capoulade, J.

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt.47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008).
[CrossRef]

Carniglia, C. K.

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Chao, S.

Commandré, M.

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Cravetchi, I. V.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Debar, J. I.

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Di Giulio, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Drazdys, R.

Ehlers, H.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

Emmert, L. A.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Fan, Z. X.

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).,” Opt. Express20(10), 11561–11573 (2012).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
[CrossRef]

Fu, X.

Gallais, L.

Huang, Y. S.

Jensen, L.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express17(15), 12269–12278 (2009).
[CrossRef] [PubMed]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Jupe, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Jupé, M.

Kicas, S.

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Lappschies, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Laurence, T. A.

Lee, C. C.

Ly, S.

Lynch, D. W.

J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
[CrossRef]

Mangote, B.

Marrone, S. G.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Mažule, L.

Melninkaitis, A.

Mende, M.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

Mero, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Milam, D.

Mirauskas, J.

Natoli, J. Y.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008).
[CrossRef]

Natoli, J.-Y.

Nguyen, D.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Ni, Z. J.

Olson, C. G.

J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002).
[CrossRef]

Perrone, M. R.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Picard, R. H.

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Pond, B. J.

Porteus, J. O.

Protopapa, M. L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Raj, T.

Riggers, W.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

Ristau, D.

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express17(15), 12269–12278 (2009).
[CrossRef] [PubMed]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
[CrossRef]

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
[CrossRef]

Rudolph, W.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Runkel, M.

M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002).
[CrossRef]

Schrameyer, S.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
[CrossRef]

Seitel, S. C.

Shao, J. D.

Shen, N.

Sirutkaitis, V.

Starke, K.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

Tolenis, T.

Valentini, A.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Vasanelli, L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Wang, W. H.

Weaver, J. H.

J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
[CrossRef]

Zerrad, M.

Zhang, D. W.

Zhuang, S. L.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett.93(26), 261903 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation,” J. Appl. Phys.92(10), 5720–5728 (2002).
[CrossRef]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys.104(5), 053120 (2008).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

J. H. Weaver, D. W. Lynch, and C. G. Olson, “Optical properties of niobium from 0.1 to 36.4 eV,” Phys. Rev. B7(10), 4311–4318 (1973).
[CrossRef]

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE (4)

M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of bulk DKDP damage distribution, obscuration, and pulse-length dependence,” Proc. SPIE4347, 383–388 (2001).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE7504, 75041E, 75041E-8 (2009).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

M. Mende, L. Jensen, H. Ehlers, W. Riggers, H. Blaschke, and D. Ristau, “Laser-induced damage of pure and mixture material high reflectors for 355nm and 1064nm wavelength,” Proc. SPIE8168, 816821, 816821-11 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films358(1-2), 250–258 (2000).
[CrossRef]

Other (2)

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, USA, 2010).

D. R. Lide, Handbook of Chemistry and Physics, 87th ed. (CRC press, USA 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Damage thresholds of Nb2O5/SiO2 and ZrO2 Nb2O5/SiO2 mixtures. (a) Damage thresholds versus the volumetric fraction of high index material obtained at 1064nm, 12 ns, 1 on 1 mode (left scale, solid symbols). For the sake of comparison we plot the damage thresholds mentioned in Ref [11]. at 530 fs, 1030nm (right scale, open symbols), the solid curves are drawn to show their evolution tendencies. (b) Damage thresholds versus the band gap of the material with the same symbols.

Fig. 2
Fig. 2

LIDT Performances of two sets of mixtures: (a) Nb2O5/SiO2 (b) ZrO2/SiO2. The probability curves are fitted by the statistical approach (dot line) and the thermal model (solid line).

Fig. 3
Fig. 3

The morphology of damages in single layer coatings induced by nanosecond laser pulses with a diameter of 25.4 µm at 1/e2: (top) Nb2O5/SiO2 (bottom) ZrO2/SiO2.

Fig. 4
Fig. 4

Absorptivity of defects with different complex index versus defect size. A and B represent the different media simple, Nb2O5 (A) and its high-silica mixture (B); the numbers represent the type of defect, metallic defect with n = 1.5 + 5•i (No.1), NbOx with n = 2 + i (No.2). NbOx with n = 2 + 0.1•i (No.3).

Fig. 5
Fig. 5

Critical fluence calculated for metallic and NbOx defects in simple Nb2O5 and its high-silica mixture.

Fig. 6
Fig. 6

Distribution versus fluence of damage precursor densities for the two sets of mixtures obtained by the statistical approach (solid line) and the thermal model (symbols): (a) Nb2O5/SiO2 (b) ZrO2/SiO2.

Fig. 7
Fig. 7

Critical Temperatures extracted from fitting and Comparison with measured plasma temperatures from Ref [22].

Tables (1)

Tables Icon

Table 1 Summary of the properties of interest of the films

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(F,S)=1exp(D(F)S)
D(F)=α (F F th ) β
ρ(R)=A/ R p
D(F)= Rmin Rmax ρ(R)dR

Metrics