Abstract

We carried out terahertz (THz)-wave generation from the GaP planar waveguides under collinear phase-matched difference-frequency mixing of two near-infrared sources. TE- and TM-mode of THz-waves were generated simultaneously by adjusting the polarization direction of two incident infrared sources. The phase shift between TE- and TM-mode of THz-wave in the waveguide was dependent on the waveguide length and contributed to the generation of the elliptical polarized THz-wave. The ellipticity of generated THz-wave increased as waveguide length increased. We indicated the possibility of control of rotational direction of elliptical polarization of emitted THz wave.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nishizawa, “Open-up a new field in tera-hertz band,” J. Acoust. Soc. Jpn57(2), 163–169 (2001).
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  3. D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
    [CrossRef]
  4. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B13(11), 2424–2436 (1996).
    [CrossRef]
  5. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36(30), 7853–7859 (1997).
    [CrossRef] [PubMed]
  6. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
    [CrossRef]
  7. F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B4(12), 4556–4578 (1971).
    [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
    [CrossRef]
  9. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
    [CrossRef]
  10. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
    [CrossRef]
  11. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
    [CrossRef]
  12. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95(12), 7588–7591 (2004).
    [CrossRef]
  13. W. Shi and Y. J. Ding, “Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP,” Opt. Lett.30(9), 1030–1032 (2005).
    [CrossRef] [PubMed]
  14. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
    [CrossRef]
  15. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002).
    [CrossRef] [PubMed]
  16. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
    [CrossRef] [PubMed]
  17. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
    [CrossRef] [PubMed]
  18. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
    [CrossRef]
  19. X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
    [CrossRef]
  20. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
    [CrossRef]
  21. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
    [CrossRef]
  22. A. Borghesi and G. Guizzetti, Handbook of Optical Constants of Solids (Academic, 1985).
  23. J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
    [CrossRef]
  24. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
    [CrossRef]
  25. Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011).
    [CrossRef] [PubMed]
  26. K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett.33(20), 2314–2316 (2008).
    [CrossRef] [PubMed]
  27. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express15(25), 16308–16315 (2007).
    [CrossRef] [PubMed]
  28. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett.34(3), 274–276 (2009).
    [CrossRef] [PubMed]
  29. F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006).
    [CrossRef]
  30. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express15(18), 11117–11125 (2007).
    [CrossRef] [PubMed]
  31. A. Y. Elezzabi and S. Sederberg, “Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment,” Opt. Express17(8), 6600–6612 (2009).
    [CrossRef] [PubMed]

2011

2009

2008

2007

2006

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006).
[CrossRef]

2005

2004

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95(12), 7588–7591 (2004).
[CrossRef]

2003

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

2002

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002).
[CrossRef] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
[CrossRef]

2001

J. Nishizawa, “Open-up a new field in tera-hertz band,” J. Acoust. Soc. Jpn57(2), 163–169 (2001).

1999

1997

1996

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B13(11), 2424–2436 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
[CrossRef]

1992

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
[CrossRef]

1984

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
[CrossRef]

1971

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B4(12), 4556–4578 (1971).
[CrossRef]

Ajili, L.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Ajito, K.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Auston, D. A.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
[CrossRef]

Avetisyan, Y.

Avetisyan, Y. H.

Beere, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Chang, G.

Cheung, K. P.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
[CrossRef]

Chuang, M. Y.

Davies, G.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

De Martini, F.

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B4(12), 4556–4578 (1971).
[CrossRef]

Ding, Y. J.

Divin, C. J.

Elezzabi, A. Y.

Faist, J.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Fernelius, N.

Galvanauskas, A.

Hangyo, M.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett.34(3), 274–276 (2009).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
[CrossRef]

Huang, Y. C.

Ito, H.

Ito, R.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
[CrossRef]

Jacobsen, R. H.

Jepsen, P. U.

Jin, Y.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
[CrossRef]

Kanda, N.

Kawase, K.

Keiding, S. R.

Kimura, T.

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

Kondo, T.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
[CrossRef]

Konishi, K.

Kuwata-Gonokami, M.

Lee, C. H.

Lin, F. Y.

Lin, Y. H.

Lin, Y. Y.

Linfield, E.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Ma, X. F.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
[CrossRef]

Matsuura, S.

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006).
[CrossRef]

Mizuno, M.

Musheinish, M. A.

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
[CrossRef]

Nakanishi, H.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95(12), 7588–7591 (2004).
[CrossRef]

Nakashima, S.

Nishizawa, J.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

J. Nishizawa, “Open-up a new field in tera-hertz band,” J. Acoust. Soc. Jpn57(2), 163–169 (2001).

Norris, T. B.

Oyama, Y.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

Ritchie, D.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Rochat, M.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Rungsawang, R.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Saito, K.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

Saito, M.

Sakai, K.

Sasaki, T.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

Sasaki, Y.

Sederberg, S.

Shi, W.

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

Shoji, I.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
[CrossRef]

Smith, P. R.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
[CrossRef]

Sohma, S.

Suizu, K.

Suto, K.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

Suzuki, H.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Suzuki, Y.

Takahashi, H.

Takano, K.

Takenouchi, H.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Tanabe, T.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

Tani, M.

Taniuchi, T.

Tashiro, H.

Tomita, I.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Ueno, Y.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

Urata, Y.

Vodopyanov, K.

Vodopyanov, K. L.

Wada, S.

Wang, T. D.

Watanabe, W.

Watanabe, Y.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
[CrossRef]

Willenberg, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

Williamson, S. L.

Yamada, I.

Yang, J.

Zhang, X.-C.

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett.81(8), 1381–1383 (2002).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett.83(2), 237–239 (2003).
[CrossRef]

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.45(3), 284–286 (1984).
[CrossRef]

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55 µm pumping,” Appl. Phys. Lett.88(7), 071118 (2006).
[CrossRef]

X.-C. Zhang, Y. Jin, and X. F. Ma, “Coherent measurement of THz optical rectification from electro-optic crystals,” Appl. Phys. Lett.61(23), 2764–2766 (1992).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996).
[CrossRef]

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett.89(21), 211105 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett.19(3), 143–145 (2007).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation From GaP,” IEEE Photon. Technol. Lett.18(19), 2008–2010 (2006).
[CrossRef]

J. Acoust. Soc. Jpn

J. Nishizawa, “Open-up a new field in tera-hertz band,” J. Acoust. Soc. Jpn57(2), 163–169 (2001).

J. Appl. Phys.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95(12), 7588–7591 (2004).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys.93(8), 4610–4615 (2003).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference- frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D Appl. Phys.36(8), 953–957 (2003).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron.34(8), 797–833 (2002).
[CrossRef]

Phys. Rev. B

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B4(12), 4556–4578 (1971).
[CrossRef]

Other

A. Borghesi and G. Guizzetti, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of THz wave generation under the difference frequency generation. The polarization of the pump and signal source was set to along [11] crystalline direction. The polarization of generated THz wave was measured by wire-gird polarizer.

Fig. 2
Fig. 2

Frequency dependence of the THz power for GaP planar waveguides. Bule and red solid line illustrates the transmitted THz power through the wire-grid polarizer for TE and TM-mode component.

Fig. 3
Fig. 3

The calculated results for the modal-dispersion relationships of the guiding modes in the GaP planar waveguide. The bule and red solid lines indicate the effective refractive index in the waveguide for TE- and TM-modes. The dotted line shows the refractive index which is required for the collinear phase matching condition in difference frequency mixing.

Fig. 4
Fig. 4

The polar plot for the THz radiation power from GaP planar waveguides (a) and bulk GaP crystals (b) with <111> excitation by the incident sources as a function of rotation angle of wire-grid polarizer for several crystal lengths of 5(square), 10(circle), and 15mm(triangle).

Fig. 5
Fig. 5

The polar plot for the THz radiation power from GaP planar waveguides (a) as a function of rotation angle of wire-grid polarizer for 10-mm-long planar waveguide under the polarization direction of two incident sources along the [11] (black) and [11] (red) crystalline direction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P THz =( 0 0 0 d 14 0 0 0 0 0 0 d 14 0 0 0 0 0 0 d 14 )( E 1,x E 2,x E 1,y E 2,y E 1,z E 2,z E 1,y E 2,z + E 1,z E 2,y E 1,x E 2,z + E 1,z E 2,x E 1,x E 2,y + E 1,y E 2,x ),
n p λ p - n s λ s = n eff, THz λ THz ,
t λ THz = 1 π n THz 2 n eff, THz 2 tan 1 n eff, THz 2 1 n THz 2 n eff, THz 2 ,
t λ THz = 1 π n THz 2 n eff, THz 2 tan 1 ( n THz n eff, THz 2 1 n THz 2 n eff, THz 2 ).

Metrics