Abstract

It is well known that semiconductor distributed feedback lasers (DFB) are key devices for optical communications. However direct modulation applications are limited by the frequency chirp induced by current modulation. We demonstrate that a proper external control laser operation leads to chirp-to-power ratio (CPR) stabilization over a wide range of modulation frequencies as compared to the free-running case. Under experimentally selected optical feedback conditions, the CPR decreases significantly in the adiabatic regime from about 650 MHz/mW in the solitary case down to 65 MHz/mW. Experimental results are also confirmed by numerical investigations based on the transfer matrix method. Simulations point out the possible optimization of the CPR in the adiabatic regime by considering a judicious cavity design in conjunction with a proper external control. These results demonstrate important routes for improving the transmission performance in optical telecommunication systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, Laser Diode Modulation and Noise (Kuwer Academic Publisher, 1991).
  2. K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
    [CrossRef]
  3. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
    [CrossRef]
  4. J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994).
    [CrossRef]
  5. N. A. Naderi, F. Grillot, V. Kovanis, and L. F. Lester, “Simultaneous low linewidth enhancement factor and high bandwidth quantum-dash injection-locked laser,” International Photon. Conf. Arlington, USA (2011).
  6. F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
    [CrossRef]
  7. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity (Wiley, 23–54, 2005).
  8. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988).
    [CrossRef]
  9. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
  10. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
    [CrossRef]
  11. C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986).
    [CrossRef]
  12. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
    [CrossRef]
  13. J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
    [CrossRef]
  14. G. Duan, P. Gallion, and G. Debarge, “Analysis of frequency chirping of semiconductor lasers in the presence of optical feedback,” Opt. Lett.12(10), 800–802 (1987).
    [CrossRef] [PubMed]
  15. F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
    [CrossRef]
  16. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011).
    [CrossRef]
  17. R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
    [CrossRef]
  18. L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992).
    [CrossRef]
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  20. G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett.1(12), 419–421 (1989).
    [CrossRef]
  21. G. P. Agrawal, Semiconductor Lasers (Van Nostrand Reinhold, 1993)
  22. P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
    [CrossRef]
  23. B. Thedrez, J. M. Rainsant, N. Aberkane, B. Andre, H. Bissessur, J. G. Provost, and B. Fernier, “ Power and facet phase dependence of chirp for index and gain-coupled DFB lasers,” paper TuE41, Semiconductor Laser Conference, 175–176 (1998).
  24. F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
    [CrossRef]
  25. F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
    [CrossRef]
  26. B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
    [CrossRef]
  27. A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996).
    [CrossRef]
  28. K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
    [CrossRef]
  29. I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
    [CrossRef]
  30. L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000).
    [CrossRef]

2012 (1)

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

2011 (1)

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011).
[CrossRef]

2010 (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

2004 (1)

F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
[CrossRef]

2003 (1)

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

2002 (2)

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

2000 (1)

L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000).
[CrossRef]

1996 (1)

A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996).
[CrossRef]

1994 (1)

J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994).
[CrossRef]

1992 (2)

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992).
[CrossRef]

1991 (1)

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

1989 (2)

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett.1(12), 419–421 (1989).
[CrossRef]

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

1988 (2)

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
[CrossRef]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988).
[CrossRef]

1987 (3)

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

G. Duan, P. Gallion, and G. Debarge, “Analysis of frequency chirping of semiconductor lasers in the presence of optical feedback,” Opt. Lett.12(10), 800–802 (1987).
[CrossRef] [PubMed]

1986 (3)

C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986).
[CrossRef]

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).

1985 (1)

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett.1(12), 419–421 (1989).
[CrossRef]

Anfray, T.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Asryan, L. V.

L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000).
[CrossRef]

Aubin, G.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Aupetit-Berthelemot, C.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Baets, R.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Binder, J.

J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994).
[CrossRef]

Bjork, K.

K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Bowers, J. E.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
[CrossRef]

Brosson, P.

A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996).
[CrossRef]

Brown, T. G.

L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992).
[CrossRef]

Buytaert, F.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Caroubalos, C.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

Chanclou, P.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Chaumont, C.

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).

Christiansen, P. L.

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
[CrossRef]

Debarge, G.

Den Boef, A. J.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
[CrossRef]

Duan, G.

Duan, G.-H.

F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
[CrossRef]

Erasme, D.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Franchois, A.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Fredriksz, C. W.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Gallion, P.

Gauthier-Lafaye, O.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

Gentner, J. L.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

Grillot, F.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011).
[CrossRef]

F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
[CrossRef]

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Henry, C.

C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986).
[CrossRef]

Hubert, S.

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Jany, C.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Kazarinov, R. F.

C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986).
[CrossRef]

Kazmierski, C.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Kechaou, K.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Koch, T. L.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
[CrossRef]

Kohn, U.

J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994).
[CrossRef]

Kuindersma, P.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Lafragette, J. L.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

Lenstra, D.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
[CrossRef]

Lestra, A.

A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996).
[CrossRef]

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

Mallecot, F.

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Mark, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

Martineau, M. F.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Matsui, Y.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

McCallion, K.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

Merghem, K.

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

Mork, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
[CrossRef]

Nilsson, O.

K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Olesen, H.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

Olofsson, L.

L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992).
[CrossRef]

Orfanos, I.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

Pan, X.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

Petermann, K.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988).
[CrossRef]

Pinquier, A.

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Provost, J. G.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011).
[CrossRef]

Py, J.

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

Roux, L.

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Saito, S.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

Schimpe, R.

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
[CrossRef]

Schunk, N.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988).
[CrossRef]

Silvestre, L.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

Sphicopoulos, T.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

Suris, R. A.

L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000).
[CrossRef]

Thedrez, B.

F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
[CrossRef]

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).

Tromborg, B.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
[CrossRef]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

Tsigopoulos, A.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

Vankwikelberge, P.

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
[CrossRef]

Voiriot, V.

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

Zheng, X.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

Electron. Lett. (2)

R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5-µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique,” Electron. Lett.22(9), 453–454 (1986).
[CrossRef]

K. Kechaou, T. Anfray, K. Merghem, C. Aupetit-Berthelemot, G. Aubin, C. Kazmierski, C. Jany, P. Chanclou, and D. Erasme, “Improved NRZ transmission distance at 20 Gbit/s using dual electroabsorption modulated laser,” Electron. Lett.48(6), 335–336 (2012).
[CrossRef]

IEEE J. Quantum Electron. (10)

F. Grillot, B. Thedrez, and G.-H. Duan, “Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures,” IEEE J. Quantum Electron.40(3), 231–240 (2004).
[CrossRef]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection-locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron.23(11), 1875–1889 (1987).
[CrossRef]

P. Vankwikelberge, F. Buytaert, A. Franchois, R. Baets, P. Kuindersma, and C. W. Fredriksz, “Analysis of the carrier-induced FM response of DFB lasers: Theoretical and Experimental case studies,” IEEE J. Quantum Electron.25(11), 2239–2254 (1989).
[CrossRef]

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, and C. Caroubalos, “A tractable above-threshold model for the design of DFB and phase-shifted DFB lasers,” IEEE J. Quantum Electron.27(4), 946–956 (1991).
[CrossRef]

L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron.36(10), 1151–1160 (2000).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.21(6), 674–679 (1985).
[CrossRef]

C. Henry and R. F. Kazarinov, “Instabilities of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron.22(2), 294–301 (1986).
[CrossRef]

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron.24(2), 123–133 (1988).
[CrossRef]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron.24(7), 1242–1247 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron.16(5), 1126–1139 (2010).
[CrossRef]

IEEE Photon. J. (1)

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a mach-zehnder interferometer,” IEEE Photon. J.3(3), 476–488 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux, “Analysis, fabrication and characterization of 1.5μm selection-free tapered stripe DFB lasers,” IEEE Photon. Technol. Lett.14(8), 1040–1042 (2002).
[CrossRef]

L. Olofsson and T. G. Brown, “Frequency dependence of the chirp factor in 1.55 μm distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett.4(7), 688–691 (1992).
[CrossRef]

G. P. Agrawal, “Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers,” IEEE Photon. Technol. Lett.1(12), 419–421 (1989).
[CrossRef]

J. Binder and U. Kohn, “10 Gbits/s-dispersion optimized transmission at 1,55 μm wavelength on standard single mode fiber,” IEEE Photon. Technol. Lett.6(4), 558–560 (1994).
[CrossRef]

A. Lestra and P. Brosson, “Design rules for a low-chirp integrated DFB laser with electroabsorption modulator,” IEEE Photon. Technol. Lett.8(8), 998–1000 (1996).
[CrossRef]

F. Grillot, B. Thedrez, O. Gauthier-Lafaye, M. F. Martineau, V. Voiriot, J. L. Lafragette, J. L. Gentner, and L. Silvestre, “Coherence collapse threshold of 1.3 μm semiconductor DFB lasers,” IEEE Photon. Technol. Lett.15(1), 9–11 (2003).
[CrossRef]

F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot, and J. L. Lafragette, “2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback,” IEEE Photon. Technol. Lett.14(1), 101–103 (2002).
[CrossRef]

J. Lightwave Technol. (2)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).

K. Bjork and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Opt. Lett. (1)

Other (6)

D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity (Wiley, 23–54, 2005).

K. Petermann, Laser Diode Modulation and Noise (Kuwer Academic Publisher, 1991).

N. A. Naderi, F. Grillot, V. Kovanis, and L. F. Lester, “Simultaneous low linewidth enhancement factor and high bandwidth quantum-dash injection-locked laser,” International Photon. Conf. Arlington, USA (2011).

G. P. Agrawal, Semiconductor Lasers (Van Nostrand Reinhold, 1993)

B. Thedrez, J. M. Rainsant, N. Aberkane, B. Andre, H. Bissessur, J. G. Provost, and B. Fernier, “ Power and facet phase dependence of chirp for index and gain-coupled DFB lasers,” paper TuE41, Semiconductor Laser Conference, 175–176 (1998).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.
       1
Fig. 1

Schematic of the optical feedback loop

Fig.
       2
Fig. 2

Amplitude (blue) and phase (red) of the CPR as a function of the modulation frequency for the solitary QW DFB laser.

Fig.
       3
Fig. 3

Amplitude (blue) and phase (red) of the CPR as a function of the modulation frequency for various optical feedback Γ (a) Γ = 1.4 × 10−6, (b) Γ = 1.5 × 10−5, (c) Γ = 1.6 × 10−4, and (d) Γ = 5.5 × 10−3.

Fig.
       4
Fig. 4

CPR in the adiabatic regime measured at 500 MHz as a function of the optical feedback strength for the QW DFB laser.

Fig.
       5
Fig. 5

Measured 2β/m ratio as a function of the modulation frequency for the solitary case (red plot) and for an optical feedback of about Γ = 1.5 × 10−5 optical feedback (blue plot).

Fig.
       6
Fig. 6

Calculated CPR in the adiabatic regime as a function of the output power for various feedback conditions ( 0%< R AR,eq = | r AR,eq | 2 =γ<4% ) and for κL = 0.8, ϕHR≈0.9π

Fig.
       7
Fig. 7

(a) Zoom from Fig. 6 showing the calculated CPR in the adiabatic regime as a function of the output power for various feedback conditions (κL = 0.8); (b) Calculated CPR in the adiabatic regime as a function of the effective front facet reflectivity (κL = 0.8, P0 = 3.36 mW).

Fig.
       8
Fig. 8

Calculated CPR in the adiabatic regime as a function of the output power for various feedback conditions for κL = 0.5 and L = 350 μm. Front facet reflectivity is 0.1% (green), 0.5% (black), 1% (red) and 2% (blue) respectively.

Tables (1)

Tables Icon

Table 1 Simulation parameters of AR/HR-DFB laser

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2β m = α H 1+ ( ω c ω ) 2
f c = 1 2π v g g P P
g P = ε g 1 + ε P
dE dt  = [ jω+ 1 2 ( 1+j α H )( G1/ τ p ) ]E(t)+KE(tτ)
K= 2 C AR γ τ i
r AR,eq = r ˜ AR e j φ AR +(1 | r ˜ AR | 2 ) γ e jωτ = r ˜ AR,eq e j φ AR,eq
r HR,eq = r ˜ HR e j φ HR
dN dt = I(t) e N(t) τ e GP(t)
M Period ¯ =[ n 1 + n 2 2 n 1 n 1 n 2 2 n 1 n 1 n 2 2 n 1 n 1 + n 2 2 n 1 ]×[ e k 2 l 0 0 e k 2 l ]× [ n 1 + n 2 2 n 2 n 2 n 1 2 n 2 n 2 n 1 2 n 2 n 1 + n 2 2 n 2 ]×[ e k 1 l 0 0 e k 1 l ]
M ¯ = r HR ¯ × φ HR ¯ × i=1 i=N ( M Period ¯ ) m i × φ AR,eq ¯ × r AR,eq ¯
r H R , e q ¯ = 1 1 r ˜ H R 2 [ 1 r ˜ H R r ˜ H R 1 ]
r A R , e q ¯ = 1 1 r ˜ A R , e a 2     [ 1 r ˜ A R , e q r ˜ A R , e q 1 ]
φ H R ¯ = [ e j φ H R 0 0 e j φ H R ]
φ A R , e q ¯ = [ e j φ A R , e q 0 0 e j φ A R , e q ]
g ( N , P ) = g 0 l n ( e d q w B r a d N 2 J 0 ) 1 + ε P
M ¯ 11 ( α D F B , λ ) = 0
n(z)= n th + Γ c dn dN ( N(z) N th )
r AR,eq = γ e jωτ = r ˜ AR,eq e j φ AR,eq
k= η i e α H 4π Γ c ε V

Metrics