Abstract

Recently, fiber Raman amplifiers have proven to be effective in the all-optical control of the state of polarization of signals in single-mode telecommunications optical fibers. Previous works predicted the existence of a quantitative relationship between the achieved degree of polarization and the mean Raman gain. Here, we experimentally validate such a relationship in the case of counter-propagating Raman-based polarization attractors for different pump and signal powers and for different fiber link lengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008).
    [CrossRef] [PubMed]
  2. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express17, 12612–12618 (2009).
    [CrossRef] [PubMed]
  3. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22, 712–714 (2010).
    [CrossRef]
  4. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thévenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express19, 25873–25880 (2011).
    [CrossRef]
  5. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett.29, 599–601 (2004).
    [CrossRef] [PubMed]
  6. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16, 6646–6651 (2008).
    [CrossRef] [PubMed]
  7. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express18, 15311–15317 (2010).
    [CrossRef] [PubMed]
  8. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express19, 17158–17166 (2011).
    [CrossRef] [PubMed]
  9. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10-Gb/s RZ and NRZ telecommunication signals,” IEEE J. Sel. Top. Quantum Electron.18, 621–628 (2012).
    [CrossRef]
  10. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a light beam in optical fibers,” J. Opt. Soc. Am. B29, 2046–2052 (2012).
    [CrossRef]
  11. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
    [CrossRef] [PubMed]
  12. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol.24, 4055–4063 (2006).
    [CrossRef]
  13. M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.
  14. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett.35, 3970–3972 (2010).
    [CrossRef] [PubMed]
  15. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23, 254–256 (2011).
    [CrossRef]
  16. S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express19, 24268–24279 (2011).
    [CrossRef] [PubMed]
  17. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol.29, 341–347 (2011).
    [CrossRef]
  18. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express19, 18707–18712 (2011).
    [CrossRef] [PubMed]
  19. F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
    [CrossRef]
  20. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Multichannel Raman polarizer with suppressed relative intensity noise for wavelength division multiplexing transmission lines,” Opt. Lett.37, 2073–2075 (2012).
    [CrossRef] [PubMed]
  21. V. V. Kozlov and S. Wabnitz, “Silicon Raman polarizer,” Opt. Lett.37, 737–739 (2012).
    [CrossRef] [PubMed]
  22. S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron.48, 56–60 (2012).
    [CrossRef]
  23. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer,” in Progress in Optical Science and Photonics, (Springer, 2012), Chap. 8, pp. 1–20.
  24. B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
    [CrossRef]
  25. H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt.16, 3200–3205 (1977).
    [CrossRef] [PubMed]

2012 (5)

2011 (7)

2010 (3)

2009 (2)

2008 (2)

2006 (1)

2004 (1)

1989 (1)

B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
[CrossRef]

1977 (1)

Ania-Castañón, J. D.

Berry, H. G.

Chiarello, F.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
[CrossRef]

Chin, S.

Cirigliano, M.

Claveau, R.

Dakss, M. L.

B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
[CrossRef]

Davies, R. W.

B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
[CrossRef]

Eyal, A.

Fatome, J.

Ferrario, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Ferreira, M. F. S.

Finot, C.

Foley, B.

B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
[CrossRef]

Gabrielse, G.

Galtarossa, A.

Gilardone, V.

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Kozlov, V. V.

Livingston, A. E.

Marazzi, L.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Martelli, P.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Martinelli, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Melman, P.

B. Foley, M. L. Dakss, R. W. Davies, and P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol.7, 2024–2032 (1989).
[CrossRef]

Millot, G.

Morin, P.

Muga, N. J.

Nuño, J.

Palmieri, L.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23, 254–256 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22, 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol.24, 4055–4063 (2006).
[CrossRef]

Pinto, A. N.

Pitois, S.

Popov, S.

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron.48, 56–60 (2012).
[CrossRef]

Primerov, N.

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22, 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol.24, 4055–4063 (2006).
[CrossRef]

Sauter, A.

Sergeyev, S.

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron.48, 56–60 (2012).
[CrossRef]

Sergeyev, S. V.

Shmilovitch, Z.

Thévenaz, L.

Tur, M.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22, 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol.24, 4055–4063 (2006).
[CrossRef]

Wabnitz, S.

Zadok, A.

Zilka, E.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron.48, 56–60 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10-Gb/s RZ and NRZ telecommunication signals,” IEEE J. Sel. Top. Quantum Electron.18, 621–628 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett.23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett.22, 712–714 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (9)

P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express19, 17158–17166 (2011).
[CrossRef] [PubMed]

N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express19, 18707–18712 (2011).
[CrossRef] [PubMed]

S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express19, 24268–24279 (2011).
[CrossRef] [PubMed]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thévenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express19, 25873–25880 (2011).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16, 6646–6651 (2008).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008).
[CrossRef] [PubMed]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express17, 12612–12618 (2009).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express18, 15311–15317 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (2)

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer,” in Progress in Optical Science and Photonics, (Springer, 2012), Chap. 8, pp. 1–20.

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective all-optical polarization control induced by Raman nonlinear amplification,” in “36th European Conference and Exhibition on Optical Communication (ECOC),” (Torino, Italy, 2010), p. P1.19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Parameter Γ of Eq. (1) as a function of the polarization mode dispersion coefficient D (from Ref. [19]). (b) Comparison of Eq. (1) (solid line) with Eq. (2) (dashed line).

Fig. 2
Fig. 2

Experimental setup. ECL: external cavity laser; VOA: variable optical attenuator; OI: optical isolator; FPC: fiber polarization controller; EDFA: erbium-doped fiber amplifier; OC: optical circulator; λ/4: quarter-wave plate; LP: linear polarizer; OSA: optical spectrum analyzer.

Fig. 3
Fig. 3

Measured DOP as a function of the gain G for different pump (Pin) and signal (Sin) input powers, and for four different link lengths L: (a) L = 2.90 km (D = 39 fs km−1/2), (b) L = 6.57 km (D = 22 fs km−1/2), (c) L = 8.00 km (D = 14 fs km−1/2), (d) L = 14.70 km (D = 18 fs km−1/2). Dashed curves refer to Eq. (2).

Fig. 4
Fig. 4

Measured DOP as a function of the gain G for different pump input powers (Pin) and link lengths L, and for four different signal (Sin) input powers: (a) Sin = 0 dBm, (b) Sin = −10 dBm, (c) Sin = −20 dBm, (d) Sin = −25 dBm. Dashed curves refer to Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DOP 1 exp ( G dB / Γ ) ,
DOP = 1 ( 1 + 1 + 8 G ) 1 .

Metrics