Abstract

Based on reflective optics at 13.5 nm, extreme-UV lithography is the ultimate top-down technique to define structures below 22 nm but faces several challenges arising from the discrete nature of light and matter. Owing to the short wavelength, mask surface roughness plays a fundamental role in the increase of speckle pattern contrast, compromising the uniformity of the printed features. Herein, we have used a mask with engineered gradient surface roughness to illustrate the impact that speckle has on the resulting photoresist pattern. The speckle increases the photoresist roughness, but surprisingly, only when the mask surface roughness is well above existing manufacturing capabilities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ITRS website. http://www.itrs.net/ .
  2. C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
    [CrossRef]
  3. M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).
  4. R. Hudyma and U. Mann, “Projection system for EUV lithography,” U.S. patent 7,355,678 (April 8, 2008). http://spie.org/samples/PM178.pdf
  5. G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), Chap. 6.
  7. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2010), Chaps. 1–3, 6, 8.
  8. P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).
  9. G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011).
    [CrossRef]
  10. S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
    [CrossRef]
  11. Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).
  12. P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
    [CrossRef]
  13. P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
    [CrossRef]
  14. Y. Wei and R. L. Brainard, Line-Edge Roughness of Resist Patterns in Advanced Processes for 193-Nm Immersion Lithography (SPIE Press, 2009), Chap. 10.
  15. T.-S. Gau and C.-C. Hsia, “Illumination aperture filter design using superposition,” U.S. patent 6,361,909 (March 26, 2002). http://www.google.com/patents/US6361909 .
  16. K. Jain, C. G. Willson, B. J. Lin, and B. J, “Fine-line high-speed excimer laser lithography,” Symposium on VLSI Technology, Digest of Technical Papers (1982), pp. 92–93.
  17. O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).
  18. G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).
  19. C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009).
    [CrossRef]
  20. C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).
  21. C. A. Mack, Fundamental Principles of Optical Lithography (Wiley & Sons, 2007), Chaps. 5–7.
  22. P. P. Naulleau and G. M. Gallatin, “Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt.42(17), 3390–3397 (2003).
    [CrossRef] [PubMed]
  23. V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
    [CrossRef]
  24. S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).
  25. H.-J. Mann, “Six-mirror EUV projection system with low incidence angles,” U.S. patent 7,973,908 (July 5, 2011). http://www.google.com/patents/US20090079952 .
  26. A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).
  27. A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
    [CrossRef]
  28. C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).
  29. A. K. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001), Chaps. 2–4.
  30. C. Rydberg, J. Bengtsson, and T. Sandström, “Performance of diffractive optical elements for homogenizing partially coherent light,” J. Opt. Soc. Am. A24(10), 3069–3079 (2007).
    [CrossRef] [PubMed]

2012

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

2011

G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

2010

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

2009

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009).
[CrossRef]

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

2008

P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
[CrossRef]

2007

2006

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

2004

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).

2003

P. P. Naulleau and G. M. Gallatin, “Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt.42(17), 3390–3397 (2003).
[CrossRef] [PubMed]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

Acheta, A.

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Anderson, C. N.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009).
[CrossRef]

Anderson, E. H.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

Andrey, T.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Baclea-an, L.-M.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Ban, Y.

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

Bengtsson, J.

Biafore, J. J.

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

Blomme, P.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Chandhok, M.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Choi, C.-J.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Constantoudis, V.

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

Corbalan, M. M.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Dehaene, W.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Denham, P.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Du, Y.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Farnsworth, J.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Gallatin, G. M.

G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011).
[CrossRef]

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

P. P. Naulleau and G. M. Gallatin, “Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt.42(17), 3390–3397 (2003).
[CrossRef] [PubMed]

Gary, P.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

George, S.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

George, S. A.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

Gogolides, E.

C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

Goldberg, K. A.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Goldstein, M.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Gronheid, R.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

Gullikson, E. M.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

Hayashi, H.

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

Hoef, B.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Hsia, K.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Hudyma, R.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Ishimoto, T.

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

James, T.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Jan, B.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Jones, G.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Kawata, M.

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

Kikugawa, S.

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

Kita, N.

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

Koh, C.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

La Fontaine, B.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

La Fontaine, B. M.

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Lalovic, I.

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Lanzendorf, E. J.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Leeson, M. J.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Levinson, H. J.

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Liang, T.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Mack, C. A.

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

Manfred, M.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

McClinton, B.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Michael, P.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Miyakawa, R. H.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Mochi, I.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

Montgomery, W.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Naulleau, P. P.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009).
[CrossRef]

P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
[CrossRef]

P. P. Naulleau and G. M. Gallatin, “Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt.42(17), 3390–3397 (2003).
[CrossRef] [PubMed]

Niakoula, D.

P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
[CrossRef]

Noordman, O.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Noreen, H.

C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Pan, D. Z.

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

Panda, R.

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

Park, S.-

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Partlo, B.

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

Patsis, G. P.

C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

Pawloski, A. R.

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Poliakov, P.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Roller, J.

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Rydberg, C.

Salmassi, F.

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

Sanchez, P.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Sandström, T.

Sekiguchi, K.

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

Shu, E. Y.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Smith, M. D.

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

Stivers, A. R.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Sugimoto, N.

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

Sundareswaran, S.

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

Takada, A.

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

Thackeray, J. W.

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

Tserepi, A.

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

Ujike, T.

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

Vaglio Pret, A.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

Van Houdt, J.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Vandentop, G.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Vassilios, C.

C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).

Verkest, D.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

Vladan, B.

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

Wagner, C.

C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Wurm, T. W. S

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

Yan, P.-Y.

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Zhang, G.

P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
[CrossRef]

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

Appl. Opt.

IEEE Electron Device Lett.

P. Poliakov, P. Blomme, A. Vaglio Pret, M. M. Corbalan, R. Gronheid, D. Verkest, J. Van Houdt, and W. Dehaene, “Induced variability of cell-to-cell interference by line edge roughness in NAND flash arrays,” IEEE Electron Device Lett.33(2), 164–166 (2012).
[CrossRef]

J. Micro/Nanolith

C. A. Mack, J. W. Thackeray, J. J. Biafore, and M. D. Smith, “Stochastic exposure kinetics of EUV photoresists: a simulation study,” J. Micro/Nanolith. 10, 033019 (2011).

C. Vassilios, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Micro/Nanolith. 3, 429–435 (2004).

J. Micro/Nanolith.

A. Vaglio Pret, R. Gronheid, T. Ishimoto, and K. Sekiguchi, “Resist roughness evaluation and frequency analysis: metrological challenges and potential solutions for extreme ultraviolet lithography” J. Micro/Nanolith.9, 041308 (2010).

O. Noordman, T. Andrey, B. Jan, T. James, P. Gary, P. Michael, B. Vladan, and M. Manfred, “Speckle in optical lithography and the influence on line width roughness,” J. Micro/Nanolith.8, 043002 (2009).

J. Micro/Nanolith.

Y. Ban, S. Sundareswaran, R. Panda, and D. Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J. Micro/Nanolith. 9, 6–10 (2010).

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003).
[CrossRef]

S. A. George, P. P. Naulleau, F. Salmassi, I. Mochi, E. M. Gullikson, K. A. Goldberg, and E. H. Anderson, “Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning,” J. Vac. Sci. Technol. B28, C6E23–C6E30 (2010).

C. N. Anderson and P. P. Naulleau, “Do not always blame the photons: relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists,” J. Vac. Sci. Technol. B27(2), 665–670 (2009).
[CrossRef]

P. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B26(4), 1289–1293 (2008).
[CrossRef]

MEMS MOEMS

G. M. Gallatin, N. Kita, T. Ujike, and B. Partlo, “Residual speckle in a lithographic illumination system,” J. Micro/Nanolith. MEMS MOEMS8, 043003 (2009).

Nat. Photonics

C. Wagner and H. Noreen, “EUV lithography: lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Proc. SPIE

M. Kawata, A. Takada, H. Hayashi, N. Sugimoto, and S. Kikugawa, “Novel low thermal expansion material for EUV application,” Proc. SPIE6151, 368–374 (2006).

G. Zhang, P.-Y. Yan, T. Liang, Y. Du, P. Sanchez, S.- Park, E. J. Lanzendorf, C.-J. Choi, E. Y. Shu, A. R. Stivers, J. Farnsworth, K. Hsia, M. Chandhok, M. J. Leeson, and G. Vandentop, “EUV Mask process development and integration,” Proc. SPIE6283, 62830G, 62830G-10 (2006).
[CrossRef]

P. P. Naulleau, C. N. Anderson, L.-M. Baclea-an, P. Denham, S. George, K. A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, B. McClinton, R. H. Miyakawa, W. Montgomery, J. Roller, and T. W. S Wurm, “The SEMATECH Berkeley microfield exposure tool: learning at the 22-nm node and beyond,” Proc. SPIE7271, 7271W (2009).

G. M. Gallatin and P. P. Naulleau, “Modeling the transfer of line edge roughness from an EUV mask to the wafer,” Proc. SPIE7969, 796903, 796903-10 (2011).
[CrossRef]

S. A. George, P. P. Naulleau, E. M. Gullikson, I. Mochi, F. Salmassi, K. A. Goldberg, and E. H. Anderson, “Replicated mask surface roughness effects on EUV lithographic patterning and line edge roughness,” Proc. SPIE7969, 79690E, 79690E-10 (2011).
[CrossRef]

A. R. Pawloski, A. Acheta, I. Lalovic, B. M. La Fontaine, and H. J. Levinson, “Characterization of line-edge roughness in photoresist using an image fading technique,” Proc. SPIE5376, 414–425 (2004).
[CrossRef]

Other

H.-J. Mann, “Six-mirror EUV projection system with low incidence angles,” U.S. patent 7,973,908 (July 5, 2011). http://www.google.com/patents/US20090079952 .

A. K. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001), Chaps. 2–4.

ITRS website. http://www.itrs.net/ .

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), Chap. 6.

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2010), Chaps. 1–3, 6, 8.

R. Hudyma and U. Mann, “Projection system for EUV lithography,” U.S. patent 7,355,678 (April 8, 2008). http://spie.org/samples/PM178.pdf

C. A. Mack, Fundamental Principles of Optical Lithography (Wiley & Sons, 2007), Chaps. 5–7.

Y. Wei and R. L. Brainard, Line-Edge Roughness of Resist Patterns in Advanced Processes for 193-Nm Immersion Lithography (SPIE Press, 2009), Chap. 10.

T.-S. Gau and C.-C. Hsia, “Illumination aperture filter design using superposition,” U.S. patent 6,361,909 (March 26, 2002). http://www.google.com/patents/US6361909 .

K. Jain, C. G. Willson, B. J. Lin, and B. J, “Fine-line high-speed excimer laser lithography,” Symposium on VLSI Technology, Digest of Technical Papers (1982), pp. 92–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cartoon of an EUV mask representing the absorber stack, the Mo/Si multilayer, the Cr layer for surface roughness variation, the LTEM substrate, and the EUV light path. (b) Mask layout used for speckle evaluation: the red area represents the Cr layer deposited to increase the surface roughness (labeled from A to H), the white rectangles represent the locations of the mask gratings (54 nm line/space, 1:1 duty cycle), the red dots are the top-down SEM picture locations on wafer, and the green dashed lines indicate the reference modules (no Cr deposited, I site). On the left, AFM images for high, mid and low surface roughness are reported.

Fig. 2
Fig. 2

Sketch of the Conventional (a) and Dipole-60 (b) illuminations used for the exposures. In the cartoons, the + 1 diffraction orders are represented for f = fcut-off. c) Aerial image contrast of Conventional (blue) and Dipole-60 (red) illumination for 54 nm line/space exposure.

Fig. 3
Fig. 3

(a) Exposure energies and (b) LER upon mask surface roughness for Conventional (blue) and Dipole-60 (red) illumination. Below, top-down SEM micrographs for 54 nm line/space gratings exposed with (c) Conventional and (d) Dipole-60 illumination at different mask surface roughness. On the right, the speckle patterns are also shown [18].

Fig. 4
Fig. 4

PSD analysis of line edge roughness for 54 nm line/space gratings exposed with (a) Conventional and (b) Dipole-60 illuminations. The black line correspond to the reference modules (AFM = 60 pm), the other mask surface roughness conditions are represented following the roygbiv color code from violet (low rms) to red (high rms). The dashed grey lines represent the fcut-off for each illumination condition.

Fig. 5
Fig. 5

LER variations upon exposure energy variation normalized on the reference case for Conventional (blue) and Dipole-60 (red) illumination. The solid lines represent a linear fitting of the data. In the graph, fitting equation and R2 values are also reported.

Tables (1)

Tables Icon

Table 1 AFM MSR and mask reflectivity measurements along the mask area where Cr is deposited to aggravate the resulting surface roughness. Measurements errors are respectively 20 pm and 0.08%.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Speckle pattern contrast 1 N p λ 2 G + τ c T τ c = 1 2πc λ 2 Δλ
f cutoff ( Conventional )= NA λ ( 1+ σ out )=34μ m 1
{ y=mx+q x 2 + y 2 =1
q= ( m 2 +1 ) q= 5 2 f cutoff ( Dipole )=q NA λ =20.7μ m 1
f cutoff ( Conventional )=34μ m 1 f cutoff ( Dipole60 )=20.7μ m 1

Metrics