Abstract

This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each image pixel. Experimental results show the viability to recover the 3D multispectral information of the scene. Integration of 3D and multispectral information could have important benefits in different areas, including skin cancer detection, remote sensing and pattern recognition, among others.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
    [Crossref]
  2. H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
    [Crossref]
  3. H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
    [Crossref] [PubMed]
  4. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
    [Crossref]
  5. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
    [Crossref]
  6. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  7. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. 21, 171–176 (1931).
    [Crossref]
  8. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [Crossref] [PubMed]
  9. A. Stern and B. Javidi, “Three dimensional Sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [Crossref]
  10. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [Crossref]
  11. G. P. Asner and R. E. Martin, “Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests,” Front. Ecol. Environ. 7, 269–276 (2009).
    [Crossref]
  12. G. Moser and S. B. Serpico, “Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 47, 909–921 (2009).
    [Crossref]
  13. E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning Techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data,” IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003).
    [Crossref]
  14. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
    [Crossref]
  15. I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).
  16. R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).
  17. M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
    [Crossref]
  18. I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).
  19. C. G. Lee, I. Moon, and B. Javidi, “Photon-counting three-dimensional integral imaging with compression of elemental images,” J. Opt. Soc. Am. A 29, 854–860 (2012).
    [Crossref]
  20. S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
    [Crossref] [PubMed]
  21. J. F. Andresen, J. Busck, and H. Heiselberg, “Pulsed raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).
  22. M. A. Powers and C. C. Davis, “Spectral LADAR: active range-resolved three dimensional imaging spectroscopy,” Appl. Opt. 51, 1468–1478 (2012).
    [Crossref] [PubMed]
  23. A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
    [Crossref]
  24. Schneider, “Industrial Optics: OEM,” http://www.schneiderkreuznach.com , 2011.
  25. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
    [Crossref]
  26. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [Crossref] [PubMed]
  27. L. Yang, M. McCornick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
    [Crossref] [PubMed]
  28. S.-H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Technol. 1, 354–359 (2005).
    [Crossref]
  29. J. S. Jang and B. Javidi, “Three dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
    [Crossref]
  30. S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
    [Crossref]
  31. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three dimensional volumetric object reconstruction using computational integral imaging ” Opt. Express 12, 483–491 (2004).
    [Crossref] [PubMed]
  32. M. DansehPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
    [Crossref]
  33. D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
    [Crossref]

2012 (4)

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

C. G. Lee, I. Moon, and B. Javidi, “Photon-counting three-dimensional integral imaging with compression of elemental images,” J. Opt. Soc. Am. A 29, 854–860 (2012).
[Crossref]

M. A. Powers and C. C. Davis, “Spectral LADAR: active range-resolved three dimensional imaging spectroscopy,” Appl. Opt. 51, 1468–1478 (2012).
[Crossref] [PubMed]

A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
[Crossref]

2011 (3)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

2010 (4)

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[Crossref]

D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
[Crossref]

2009 (4)

M. DansehPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

G. P. Asner and R. E. Martin, “Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests,” Front. Ecol. Environ. 7, 269–276 (2009).
[Crossref]

G. Moser and S. B. Serpico, “Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 47, 909–921 (2009).
[Crossref]

2008 (2)

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

2006 (3)

A. Stern and B. Javidi, “Three dimensional Sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

J. F. Andresen, J. Busck, and H. Heiselberg, “Pulsed raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

2005 (1)

S.-H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Technol. 1, 354–359 (2005).
[Crossref]

2004 (1)

2003 (1)

E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning Techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data,” IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003).
[Crossref]

2002 (1)

1997 (1)

1988 (1)

1971 (1)

1968 (1)

1931 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Agrawala, M.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Ahn, S.

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Andresen, J. F.

Arai, J.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[Crossref] [PubMed]

Asner, G. P.

G. P. Asner and R. E. Martin, “Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests,” Front. Ecol. Environ. 7, 269–276 (2009).
[Crossref]

Berns, R. S.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

Berzina, A.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

Boldo, E.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Bouman, C. A.

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Burckhardt, C. B.

Busck, J.

Chaudhuri, A. J.

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Cho, M.

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[Crossref]

Coddington, J.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

DansehPanah, M.

Darvas, F.

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Davies, N.

Davis, C. C.

Diebele, I.

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

Dohi, T.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

Fargion, G. S.

E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning Techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data,” IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003).
[Crossref]

Friedman, R.

D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
[Crossref]

Furuya, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

García Jiménez, V.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

García Sevilla, P.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Haino, Y.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

Heiselberg, H.

Hong, S.-H.

S.-H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Technol. 1, 354–359 (2005).
[Crossref]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three dimensional volumetric object reconstruction using computational integral imaging ” Opt. Express 12, 483–491 (2004).
[Crossref] [PubMed]

Hoshino, H.

Inomata, T.

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

Ives, H. E.

Jakovels, D.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

Jang, J. S.

Jang, J.-S.

Javidi, B.

C. G. Lee, I. Moon, and B. Javidi, “Photon-counting three-dimensional integral imaging with compression of elemental images,” J. Opt. Soc. Am. A 29, 854–860 (2012).
[Crossref]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

M. DansehPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[Crossref]

A. Stern and B. Javidi, “Three dimensional Sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

S.-H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Technol. 1, 354–359 (2005).
[Crossref]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three dimensional volumetric object reconstruction using computational integral imaging ” Opt. Express 12, 483–491 (2004).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Three dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
[Crossref]

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Kapostinsh, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

Kawakita, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

Kempele, A.

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

Kim, S.-K.

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Kuwana, K.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

Kuzmina, I.

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

Kwiatkowska, E. J.

E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning Techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data,” IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003).
[Crossref]

Latorre Carmona, P.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Leahy, R. M.

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Lee, C. G.

Lee, K.-H.

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Liao, H.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Lozoya, R.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Martin, R. E.

G. P. Asner and R. E. Martin, “Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests,” Front. Ecol. Environ. 7, 269–276 (2009).
[Crossref]

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

Martins, A.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

Masamune, K.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

McCornick, M.

McGlinchey, C.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

Mitani, K.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

Moon, I.

Moser, G.

G. Moser and S. B. Serpico, “Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 47, 909–921 (2009).
[Crossref]

Nakajima, S.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

Nichol, C.

A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
[Crossref]

Okano, F.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[Crossref] [PubMed]

Okoshi, T.

Okui, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

Pérez de Lucía, G.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Pla, F.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Pollefeys, M.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Powers, M. A.

Quinzán Suárez, I.

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

Rigel, D. S.

D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
[Crossref]

Russak, J.

D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
[Crossref]

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

Sakuma, I.

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

Sato, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

Serpico, S. B.

G. Moser and S. B. Serpico, “Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 47, 909–921 (2009).
[Crossref]

Sinha, S.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Son, J.-Y.

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Son, W.-H.

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Spigulis, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

Steedly, D.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Stern, A.

A. Stern and B. Javidi, “Three dimensional Sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

Suenaga, H.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

Szeliski, R.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Taplin, L. A.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

Tran, H. H.

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

Valeine, L.

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

Wallace, A.

A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
[Crossref]

Woodhouse, I.

A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
[Crossref]

Yang, L.

Yohimura, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

Yuyama, I.

Zhao, Y.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

A Cancer Journal for Clinicians (1)

D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds. CA: A Cancer Journal for Clinicians 60, 301–316 (2010).
[Crossref]

ACM Trans. Graphics (1)

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graphics 27, 1–10 (2008).
[Crossref]

Appl. Opt. (5)

Front. Ecol. Environ. (1)

G. P. Asner and R. E. Martin, “Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests,” Front. Ecol. Environ. 7, 269–276 (2009).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

H. Liao, T. Inomata, I. Sakuma, and T. Dohi, “3D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay,” IEEE Trans. Biomed. Eng. 57, 1476–1486 (2010).
[Crossref] [PubMed]

IEEE Trans. Geosci. Remote Sens. (2)

G. Moser and S. B. Serpico, “Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 47, 909–921 (2009).
[Crossref]

E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning Techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data,” IEEE Trans. Geosci. Remote Sens. 41, 2844–2860 (2003).
[Crossref]

IEEE/OSA J. Disp. Technol. (1)

S.-H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” IEEE/OSA J. Disp. Technol. 1, 354–359 (2005).
[Crossref]

Int. Conf. on Pat. Rec. Applic. and Methods (1)

I. Quinzán Suárez, P. Latorre Carmona, P. García Sevilla, E. Boldo, F. Pla, V. García Jiménez, R. Lozoya, and G. Pérez de Lucía, “Non-Invasive melanoma diagnosis using multispectral imaging,” Int. Conf. on Pat. Rec. Applic. and Methods386–393 (2012).

J. Biom. Opt. (1)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biom. Opt. 16, 0605021 (2011).
[Crossref]

J. Disp. Technol. (2)

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[Crossref]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. (Paris) (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Lecture Notes in Computer Science (1)

H. H. Tran, H. Suenaga, K. Kuwana, K. Masamune, T. Dohi, S. Nakajima, and H. Liao, “Augmented reality system for oral surgery using 3D stereoscopic visualization,” Lecture Notes in Computer Science 6891, 81–88 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. Ahn, A. J. Chaudhuri, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminiscence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).
[Crossref] [PubMed]

Proc. IEEE (3)

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[Crossref]

A. Stern and B. Javidi, “Three dimensional Sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[Crossref]

Proc. SPIE (1)

I. Kuzmina, I. Diebele, L. Valeine, D. Jakovels, A. Kempele, J. Kapostinsh, and J. Spigulis, “Multispectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial,” Proc. SPIE 7883, 7883121 (2011).

Remote Sens. (1)

A. Wallace, C. Nichol, and I. Woodhouse, “Recovery of forest canopy parameters by inversion of multispectral LiDAR data,” Remote Sens. 4, 509–531 (2012).
[Crossref]

Other (3)

Schneider, “Industrial Optics: OEM,” http://www.schneiderkreuznach.com , 2011.

R. S. Berns, Y. Zhao, L. A. Taplin, J. Coddington, C. McGlinchey, and A. Martins, “The use of spectral imaging as an analytical tool for art conservation,” American Institute of Conservation, Annual Meeting, Los Angeles, California, United States (2009).

J.-Y. Son, W.-H. Son, S.-K. Kim, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE, doc. ID 6145598, to be published (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Integral Imaging data acquisition system setup.

Fig. 2
Fig. 2

Image reconstruction step using a projection of the elemental images through a virtual pinhole array

Fig. 3
Fig. 3

Image acquisition using the Integral Imaging technique.

Fig. 4
Fig. 4

Elemental images corresponding to positions: (2, 1), (2, 6), (2, 11), (6, 1), (6, 6), (6, 11), (9, 1), (9, 6), and (9, 11), for λ = 650nm.

Fig. 5
Fig. 5

False colour RGB reconstructed images at planes corresponding to z = 230, z = 249 and z = 267mm. The colour images were created using the spectral assumption: 480nm ← B, 550nm ← G and 650nm ← R.

Fig. 6
Fig. 6

(a) 3D profile of the 3 dice scene for λ = 650nm. (b) Elemental image corresponding to position (6, 5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E M p q = E I p q ( s x p x s x p M , s y q y s y q M ) ( z + g ) 2 + [ ( x s x p ) 2 + ( y s y q ) 2 ] ( 1 + 1 M ) 2
E M ( x , y , z ) = p = 0 m 1 q = 0 n 1 E M p q ( x , y , z )
D ( x , y , z ) = [ ( θ , ϕ , λ ) ( λ ) ] ( x , y , z ) 2 d θ d ϕ d λ
z ^ ( x , y ) = arg min z Z D ( x , y , z )
z ^ ( x , y ) = arg min z Z j = 1 M i = 1 N [ ( θ i , ϕ i , λ j ) ( λ j ) ] ( x , y , z ) 2

Metrics