Abstract

This paper presents a range determination approach for generating point clouds from small footprint LiDAR waveforms. Waveform deformation over complex terrain area is simulated using convolution. Drift of the peak center position is analyzed to identify the first echo returned by the illuminated objects in the LiDAR footprint. An approximate start point of peak in the waveform is estimated and adopted as the indicator of range calculation; range correction method is proposed to correct pulse widening over complex terrain surface. The experiment was carried out on small footprint LiDAR waveform data acquired by RIEGL LMS-Q560. The results suggest that the proposed approach generates more points than standard commercial products; based on field measurements, a comparative analysis between the point clouds generated by the proposed approach and the commercial software GeocodeWF indicates that: 1). the proposed approach obtained more accurate tree heights; 2). smooth surface can be achieved with low standard deviation. In summary, the proposed approach provides a satisfactory solution for range determination in estimating 3D coordinate values of point clouds, especially for correcting range information of waveforms containing deformed peaks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ackermann, “Airborne laser scanning—present status and future expectations,” ISPRS J. Photogramm. Remote Sens.54(2-3), 64–67 (1999).
    [CrossRef]
  2. M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
    [CrossRef]
  3. C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
    [CrossRef]
  4. A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
    [CrossRef]
  5. C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
    [CrossRef]
  6. B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006).
    [CrossRef]
  7. Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
    [CrossRef]
  8. W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
    [CrossRef]
  9. G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000).
    [CrossRef]
  10. Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:.
    [CrossRef]
  11. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
    [CrossRef]
  12. J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
    [CrossRef]
  13. M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
    [CrossRef]
  14. V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
    [CrossRef]
  15. L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
    [CrossRef]
  16. G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
    [CrossRef]
  17. Q. Chen, “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry,” Remote Sens. Environ.114(7), 1610–1627 (2010).
    [CrossRef]
  18. L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
    [CrossRef]
  19. Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).
  20. W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).
  21. W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).
  22. M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
    [CrossRef]
  23. A. Persson, U. Söderman, and S. Ahlberg, “Visualization and analysis of full-waveform airborne laser scanner data”, in the IAPRS Vol.XXXVI, Part 3/W19, Enschede, Netherlands, 103–108 (2005).
  24. GeoLas Consulting, www.geolas.com/Downloads/GeocodeWF , (Last access on 8 Jan, 2012).
  25. C. Hug, private communication, Dec (2011).
  26. M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
    [CrossRef]
  27. J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
    [CrossRef]
  28. http://en.wikipedia.org/wiki/Normal_distribution , (Last access on 8 Jan, 2012).
  29. W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011).
    [CrossRef]
  30. B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
    [CrossRef]

2011 (3)

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
[CrossRef]

W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011).
[CrossRef]

2010 (3)

W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).

Q. Chen, “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry,” Remote Sens. Environ.114(7), 1610–1627 (2010).
[CrossRef]

L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
[CrossRef]

2009 (4)

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

2008 (5)

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
[CrossRef]

2007 (1)

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

2006 (2)

B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006).
[CrossRef]

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

2005 (2)

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

2002 (1)

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

2000 (2)

G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000).
[CrossRef]

M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
[CrossRef]

1999 (2)

F. Ackermann, “Airborne laser scanning—present status and future expectations,” ISPRS J. Photogramm. Remote Sens.54(2-3), 64–67 (1999).
[CrossRef]

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
[CrossRef]

Ackermann, F.

F. Ackermann, “Airborne laser scanning—present status and future expectations,” ISPRS J. Photogramm. Remote Sens.54(2-3), 64–67 (1999).
[CrossRef]

Allouis, T.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

Asner, G. P.

J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
[CrossRef]

Ban, Y.

Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:.
[CrossRef]

Belluco, E.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Blair, J. B.

M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
[CrossRef]

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
[CrossRef]

Blairb, J. B.

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

Bretar, F.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

Briese, C.

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

Carabajal, C. C.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

Chauve, A.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

Chen, Q.

Q. Chen, “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry,” Remote Sens. Environ.114(7), 1610–1627 (2010).
[CrossRef]

Cohen, W. B.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

de Oliveira, R.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

Deseilligny, M. P.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

DiMarzio, J. P.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

Ducic, V.

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

Duncanson, L. I.

L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
[CrossRef]

Duong, H.

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

Duong, V. H.

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

Durrieu, S.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

Espirito-Santo, F. D. B.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

Feola, A.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Hancock, D.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

Harding, D. J.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

Hofton, M. A.

M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
[CrossRef]

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
[CrossRef]

Hollaus, M.

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

Huang, W. J.

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Hunter, M. O.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

Jutzi, B.

M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
[CrossRef]

B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006).
[CrossRef]

Keller, M.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

Kimesb, D. S.

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

Kirchhof, M.

M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
[CrossRef]

Kovacs, K.

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

Lefsky, M. A.

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

Li, B.

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Lindenbergh, R.

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

Magruder, L. A.

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

Mallet, C.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

Marani, M.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Melzer, T.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

Menenti, M.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Minster, J. B.

M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
[CrossRef]

Niemann, K. O.

L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
[CrossRef]

Niu, Z.

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Parker, G. G.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

Pfeifer, N.

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

Puech, W.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

Qin, Y. C.

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:.
[CrossRef]

Rabine, D. L.

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
[CrossRef]

Ranson, K. J.

G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000).
[CrossRef]

Ransonb, K. J.

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

Schutz, B. E.

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

Shuman, C. A.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

Silverberg, E. C.

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

Stilla, U.

W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011).
[CrossRef]

W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).

M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
[CrossRef]

B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006).
[CrossRef]

Stoll, M.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Studnicka, N.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

Sun, G.

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000).
[CrossRef]

Ullrich, A.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

Urban, T. J.

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

van Aardt, J. A. N.

J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
[CrossRef]

Vega, C.

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

Vosselman, G.

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

Vu, T. T.

Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:.
[CrossRef]

Wagner, W.

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

Wang, C.

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

Wang, C. Y.

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Webb, C. E.

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

Wu, J. Y.

J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
[CrossRef]

Wu, Y. C.

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Wulder, M. A.

L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
[CrossRef]

Xiong, Z. P.

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Yao, W.

W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011).
[CrossRef]

W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).

Zhan, Y. L.

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Zwally, H. J.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

Bioscience (1)

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote sensing for ecosystem studies,” Bioscience52(1), 19–30 (2002).
[CrossRef]

Geophys. Res. Lett. (2)

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira, “Estimates of forest canopy height and aboveground biomass using ICESat,” Geophys. Res. Lett.32(22), 1–4 (2005).
[CrossRef]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat mssion,” Geophys. Res. Lett.32(21), 1–4 (2005).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (2)

W. Yao and U. Stilla, “Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis,” IEEE Geosci. Remote Sens. Lett.8(4), 607–611 (2011).
[CrossRef]

Y. C. Qin, T. T. Vu, and Y. Ban, “Towards an optimal algorithm for lidar waveform decomposition,” IEEE Geosci. Remote Sens. Lett., doi:.
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (7)

H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “ICESat full-waveform altimetry compared to airborne laser scanning altimetry over the netherlands,” IEEE Trans. Geosci. Rem. Sens.47(10), 3365–3378 (2009).
[CrossRef]

C. Wang, M. Menenti, M. Stoll, A. Feola, E. Belluco, and M. Marani, “Separation of ground and low vegetation signatures in LiDAR measurements of salt-marsh environments,” IEEE Trans. Geosci. Rem. Sens.47(7), 2014–2023 (2009).
[CrossRef]

G. Sun and K. J. Ranson, “Modeling lidar returns from forest canopies,” IEEE Trans. Geosci. Rem. Sens.38(6), 2617–2626 (2000).
[CrossRef]

L. A. Magruder, C. E. Webb, T. J. Urban, E. C. Silverberg, and B. E. Schutz, “ICESat altimetry data product verification at white sands space harbor,” IEEE Trans. Geosci. Rem. Sens.45(1), 147–155 (2007).
[CrossRef]

M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser altimeter waveforms,” IEEE Trans. Geosci. Rem. Sens.38(4), 1989–1996 (2000).
[CrossRef]

J. Y. Wu, J. A. N. van Aardt, and G. P. Asner, “A comparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation,” IEEE Trans. Geosci. Rem. Sens.49(6), 2402–2414 (2011).
[CrossRef]

W. Yao and U. Stilla, “Mutual enhancement of weak laser pulses for point cloud enrichment based on full-waveform analysis,” IEEE Trans. Geosci. Rem. Sens.48, 3571–3579 (2010).

Int. J. Remote Sens. (3)

W. Wagner, M. Hollaus, C. Briese, and V. Ducic, “3D vegetation mapping using small‐footprint full waveform airborne laser scanners,” Int. J. Remote Sens.29, 1433–1452 (2008) (</jrn>).

V. H. Duong, R. Lindenbergh, N. Pfeifer, and G. Vosselman, “Single and two epoch analysis of ICESat full waveform data over forested areas,” Int. J. Remote Sens.29(5), 1453–1473 (2008).
[CrossRef]

A. Chauve, C. Vega, S. Durrieu, F. Bretar, T. Allouis, M. P. Deseilligny, and W. Puech, “Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest,” Int. J. Remote Sens.30(19), 5211–5228 (2009).
[CrossRef]

ISPRS J. Photogramm. Remote Sens. (6)

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” ISPRS J. Photogramm. Remote Sens.64(1), 1–16 (2009).
[CrossRef]

B. Jutzi and U. Stilla, “Range determination with waveform recording laser systems using a Wiener Filter,” ISPRS J. Photogramm. Remote Sens.61(2), 95–107 (2006).
[CrossRef]

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens.54(2-3), 115–122 (1999).
[CrossRef]

F. Ackermann, “Airborne laser scanning—present status and future expectations,” ISPRS J. Photogramm. Remote Sens.54(2-3), 64–67 (1999).
[CrossRef]

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens.60(2), 100–112 (2006).
[CrossRef]

M. Kirchhof, B. Jutzi, and U. Stilla, “Iterative processing of laser scanning data by full waveform analysis,” ISPRS J. Photogramm. Remote Sens.63(1), 99–114 (2008).
[CrossRef]

J. Nat Resour. (1)

Y. C. Qin, Y. C. Wu, Z. Niu, Y. L. Zhan, and Z. P. Xiong, “Reconstruction of sparse forest canopy height using small footprint lidar data,” J. Nat Resour.23, 507–513 (2008).

Remote Sens. Environ. (3)

G. Sun, K. J. Ransonb, D. S. Kimesb, J. B. Blairb, and K. Kovacs, “Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data,” Remote Sens. Environ.112(1), 107–117 (2008).
[CrossRef]

Q. Chen, “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry,” Remote Sens. Environ.114(7), 1610–1627 (2010).
[CrossRef]

L. I. Duncanson, K. O. Niemann, and M. A. Wulder, “Estimating forest canopy height and terrain relief from GLAS waveform metrics,” Remote Sens. Environ.114(1), 138–154 (2010).
[CrossRef]

Sci China Earth Sci. (1)

Y. C. Qin, B. Li, Z. Niu, W. J. Huang, and C. Y. Wang, “Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform,” Sci China Earth Sci.54(4), 625–630 (2011).
[CrossRef]

Other (4)

A. Persson, U. Söderman, and S. Ahlberg, “Visualization and analysis of full-waveform airborne laser scanner data”, in the IAPRS Vol.XXXVI, Part 3/W19, Enschede, Netherlands, 103–108 (2005).

GeoLas Consulting, www.geolas.com/Downloads/GeocodeWF , (Last access on 8 Jan, 2012).

C. Hug, private communication, Dec (2011).

http://en.wikipedia.org/wiki/Normal_distribution , (Last access on 8 Jan, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Waveform shapes over different land surfaces

Fig. 2
Fig. 2

The standard emitted waveform used in deformation simulation.

Fig. 3
Fig. 3

(a). Single peak scenarios of varied LRF ground response. (b). Simulated single peak waveforms.

Fig. 4
Fig. 4

(a). Double peak scenarios of varied LRF ground response. (b). Simulated double peak waveforms.

Fig. 5
Fig. 5

Data structure of LiDAR waveforms.

Fig. 6
Fig. 6

Comparison of estimated height and field measurement for building roof (a) and treetop (b).

Fig. 7
Fig. 7

Subset aerial photography of the downtown: The circles and rectangles label the selected tree samples; the hexagon with arrow indicates the tower in the downtown.

Fig. 8
Fig. 8

Visualization of 3D points for sample trees: (a) is the tree A in Fig. 7, (b) is the tree B in Fig. 0.7.

Tables (5)

Tables Icon

Table 1 Gaussian parameters of simulated single-peak waveforms with varied LRF

Tables Icon

Table 2 Gaussian parameters of simulated two-peak waveforms with varied LRF

Tables Icon

Table 3 Statistic of regression parameters between field measurement and estimation

Tables Icon

Table 4 Comparison of tower height estimations (Unit: m)

Tables Icon

Table 5 Standard deviation of elevation within moving windows

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G( x i )= h i exp[ ( x i α i ) 2 w i 2 ]
G( x )= i=1 k G( x i )
G r = G e f o
R b = R c /LRF
Pb=PcN*Wr
Pcr=Pb+N*We
X= E 0 + D E *( D o + P cr )
Y= N 0 + D N *( D o + P cr )
Z= H 0 + D H *( D o + P cr )

Metrics