Abstract

A coherent lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in-phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation in which the positive and the negative optical sidebands can carry independent modulation waveforms. A fiber-optic 90° hybrid is used in the lidar receiver for coherent heterodyne detection and to recover the complex optical field. By loading a constant modulation frequency on the lower optical sideband and a wideband linear frequency chirp on the upper sideband, vector velocity and target distance can be measured independently. The wide modulation bandwidth of this lidar system also enabled unprecedented range resolution and the capability of measuring high velocity unambiguously.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Vaughan, “Coherent laser spectroscopy and Doppler lidar sensing in the atmosphere,” Phys. Scr. TT78(1), 73–81 (1998).
    [CrossRef]
  2. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55um for range, speed, vibration, and wind measurements,” Appl. Opt.39(21), 3716–3726 (2000).
    [CrossRef] [PubMed]
  3. M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
    [CrossRef]
  4. X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
    [CrossRef]
  5. A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).
  6. C. J. Karlsson and F. Å. A. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt.38(15), 3376–3386 (1999).
    [CrossRef] [PubMed]
  7. P. Adany, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” J. Lightwave Technol.27(16), 3351–3357 (2009).
    [CrossRef]
  8. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
    [CrossRef]
  9. D. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, “Linear FMCW laser radar for precision range and vector velocity measurements,” Proc. Meter. Res. Soc. Symp. 1076 (2008).
  10. S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett.37(11), 2022–2024 (2012).
    [CrossRef] [PubMed]
  11. Y. Zhang, M. O’Sullivan, and R. Hui, “Digital subcarrier multiplexing for flexible spectral allocation in optical transport network,” Opt. Express19(22), 21880–21889 (2011).
    [CrossRef] [PubMed]

2012

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett.37(11), 2022–2024 (2012).
[CrossRef] [PubMed]

2011

2009

P. Adany, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” J. Lightwave Technol.27(16), 3351–3357 (2009).
[CrossRef]

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

2002

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

2001

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

2000

1999

1998

J. M. Vaughan, “Coherent laser spectroscopy and Doppler lidar sensing in the atmosphere,” Phys. Scr. TT78(1), 73–81 (1998).
[CrossRef]

Adany, P.

Allen, C.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Augère, B.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Besson, C.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Bouteyre, A. D.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Bricteux, L.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Brousmiche, S.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Canat, G.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Cariou, J.-P.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

Dolfi, A.

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

Durecu, A.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Fleury, D.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Gao, S.

Goular, D.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Harris, M.

Hui, R.

Inoue, D.

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

Kagami, M.

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

Karlsson, C. J.

Kato, S.

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

Köpp, F.

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Letalick, D.

Lombard, L.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Lugan, S.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Macq, B.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Mao, X.

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

O’Sullivan, M.

Olsson, F. Å. A.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Valla, M.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

Vaughan, J. M.

J. M. Vaughan, “Coherent laser spectroscopy and Doppler lidar sensing in the atmosphere,” Phys. Scr. TT78(1), 73–81 (1998).
[CrossRef]

Yong, R. I.

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

Zhang, Y.

Aerosp. Sci. Technol.

M. Harris, R. I. Yong, F. Köpp, A. Dolfi, and J.-P. Cariou, “Wake vortex detection and monitoring,” Aerosp. Sci. Technol.6(5), 325–331 (2002).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

A. D. Bouteyre, G. Canat, M. Valla, B. Augère, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5ìm lidar for axial aircraft wake vortex detection based on high brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron.15, 441–450 (2009).

IEEE Trans. Intell. Transp. Syst.

X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range and speed measurement in car applications,” IEEE Trans. Intell. Transp. Syst.13(1), 408–413 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Eng.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical reveiw of usual techniques for distance measurement,” Opt. Eng.40(1), 10–19 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Scr. T

J. M. Vaughan, “Coherent laser spectroscopy and Doppler lidar sensing in the atmosphere,” Phys. Scr. TT78(1), 73–81 (1998).
[CrossRef]

Other

D. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, “Linear FMCW laser radar for precision range and vector velocity measurements,” Proc. Meter. Res. Soc. Symp. 1076 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of linear FM chirped signal for FMCW lidar. T’ is the period and T is the pulse width.

Fig. 2
Fig. 2

Block diagram of the proposed lidar system.

Fig. 3
Fig. 3

Signal optical spectrum measured with an OSA with 0.01nm resolution (dashed line) and with coherent heterodyne detection (solid line).

Fig. 4
Fig. 4

Power spectral density of the detected complex electrical signal described by Eq. (13).

Fig. 5
Fig. 5

Zoomed-in view at the single-tone modulation frequency for velocity measurement. Solid and dashed lines represent spectra measured when the target moves toward and away from the observer, respectively.

Fig. 6
Fig. 6

De-chirped signal spectra for distance measurements. Solid and dashed lines represent spectra measured when the target moves toward and away from the observer, respectively.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

f R = ( f 2 f 1 )Δt T =2BR/(cT)
f R =4RB/(Tc)=( f R + + f R )/2
f d =2ν/λ=( f R + f R )/2
V I (t)= V D [ cos(2π f 1 t+π f 2 f 1 T t 2 )sin(2π f CW t) ]
V Q (t)= V D [ sin(2π f 1 t+π f 2 f 1 T t 2 )+cos(2π f CW t) ]
E 0 = E s [ sin( π V I (t) V π )cos(2π f 0 t)+sin( π V Q (t) V π )sin(2π f 0 t) ]
E 0 E s [ cos[ 2π( f 0 + f 1 + f 2 f 1 2T t )t ]+sin(2π f 0 t2π f CW t) ]
E LO = A LO cos(2π f 0 t)
E sig = A sig [ cos[ 2π( f 0 + f 1 + f 2 f 1 2T (tΔt)+ f d )t ]+sin(2π f 0 t2π f CW t2π f d t) ]
( E 1 E 2 )= 1 2 ( 1 exp( j π 4 ) exp( j π 4 ) 1 )( E sig E LO )
I arm1 = | E 1 | 2 = A LO A sig { cos[ 2π( f 1 + f 2 - f 1 2T ( tΔt )+ f d )t π 4 ]sin( 2π f CW t+2π f d t+ π 4 ) }
I arm2 = | E 2 | 2 = A LO A sig { sin[ 2π( f 1 + f 2 - f 1 2T ( tΔt )+ f d )t π 4 ]+cos( 2π f CW t+2π f d t+ π 4 ) }
I final = I arm1 j I arm2 = A LO A sig { exp[ j2π( f 1 + f 2 f 1 2T (tΔt)+ f d )tj π 4 ] exp[ j(2π f CW t2π f d t+ π 4 ) ] }
R=( f R f d )cT/2B

Metrics