Abstract

We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of −5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
    [CrossRef]
  2. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009).
    [CrossRef]
  3. M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” Hindawi Sens. J.2009, 524237 (2009).
  4. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  5. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
    [CrossRef] [PubMed]
  6. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
    [CrossRef]
  7. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
    [CrossRef] [PubMed]
  8. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
    [CrossRef]
  9. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
    [CrossRef]
  10. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
    [CrossRef] [PubMed]
  11. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured optical fiber based surface plasmon resonance sensors,” J. Opt. Soc. Am. B24(6), 1423–1429 (2007).
    [CrossRef]
  12. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  13. J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
    [CrossRef]
  14. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011).
    [CrossRef] [PubMed]
  15. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  16. B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
    [CrossRef] [PubMed]
  17. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  18. W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?” Macromolecules24(25), 6660–6663 (1991).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

2009 (4)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009).
[CrossRef]

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” Hindawi Sens. J.2009, 524237 (2009).

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
[CrossRef] [PubMed]

2008 (5)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

2007 (2)

2006 (2)

2004 (1)

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
[CrossRef]

1991 (1)

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Argyros, A.

Bird, D.

Cox, F. M.

Eggleton, B. J.

Fan, X.

Fini, J. M.

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
[CrossRef]

George, A.

Groh, W.

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009).
[CrossRef]

Hassani, A.

Hautakorpi, M.

Hou, J.

Joly, N. Y.

Knight, J. C.

Kuhlmey, B. T.

Large, M. C. J.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Lee, H. W.

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Leviatan, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Li, C. M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Liu, D. M.

Ludvigsen, H.

Maier, S.

Mattinen, M.

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Russell, P. St. J.

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Scharrer, M.

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Sempere, L. N. P.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Shuai, B. B.

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Skorobogatiy, M.

Tyagi, H.

Tyagi, H. K.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Uebel, P.

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009).
[CrossRef]

Wang, R.

White, I. M.

Wu, D. K. C.

Xia, L.

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Yu, X.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, X.

Zhang, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, Y. T.

Zimmermann, A.

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Hindawi Sens. J. (1)

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” Hindawi Sens. J.2009, 524237 (2009).

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt.12(1), 015005 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.2009, 979761 (2009).
[CrossRef]

Macromolecules (1)

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
[CrossRef]

Opt. Express (8)

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
[CrossRef] [PubMed]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Cross section of the LCPCF-SPR sensor with six identical liquid cores. (b) FEM mesh and boundary conditions for computation.

Fig. 2
Fig. 2

Loss spectrum (Green) and dispersion relations of the fundamental mode (Blue), and the SPP mode (Red). Insets: Electric field distributions of specific modes. At resonance (c): Energy transfer from the core-guided mode to the plasmonic mode. Away from resonance: core-guided mode ((b) and (e)), plasmonic mode((a) and (d)) with energy confined in the individual area. Structural parameters: dc = 0.8Λ, d1 = 0.5Λ and d2 = 0.8Λ.

Fig. 3
Fig. 3

Loss spectra of the fundamental mode for na varies from 1.45 to 1.49. Structural parameters: dc = 0.8Λ, d1 = 0.5Λ and d2 = 0.8Λ.

Fig. 4
Fig. 4

Dispersion relations and resonant spectra for na = 1.45 (Solid lines) and na = 1.47 (Dashed lines), blue lines are for the fundamental modes and red for the SPP modes. Intersections (a) and (b) are the corresponding phase matching points.

Fig. 5
Fig. 5

Loss spectra of the fundamental mode for different na varies from 1.50 to 1.53. Structural parameters: dc = 0.8Λ, d1 = 0.5Λ and d2 = 0.8Λ. Inset is the close-up loss spectrum for na = 1.53.

Fig. 6
Fig. 6

Dispersion relations and resonant spectra for na = 1.50 (Solid lines) and na = 1.52 (Dashed lines), blue lines are for the fundamental modes and red for the SPP modes. Intersections (a) and (b) are the corresponding phase matching points.

Fig. 7
Fig. 7

Resonant wavelength and peak loss of the LCPCF-SPR sensor in the sensing range of 1.45-1.53.

Fig. 8
Fig. 8

Tuning of the LCPCF-SPR sensor performance with na = 1.46, d1 = 0.5Λ and d2 = 0.8Λ, while dc = 0.7Λ, 0.8Λ and 0.9Λ.

Fig. 9
Fig. 9

Tuning of the LCPCF-SPR sensor performance with na = 1.46, dc = 0.8Λ, (a) for d2 = 0.8Λ, d1 = 0.4Λ, 0.5Λ and 0.6Λ, (b) for d1 = 0.5Λ, d2 = 0.6Λ, 0.8Λ and 1.0Λ.

Metrics