Abstract

Formation of the periodic ripples on metallic surfaces is investigated comprehensively using variable ellipticities of femtosecond lasers. Compared with the linearly polarized incidence, the well defined grating-like ripple structures rather than the uniform arrays of nanoparticle can always be obtained for the elliptical polarization lasers. The ripple orientation is slanted clockwise or anticlockwise depending on the laser helicity but always display a maximum angle of 45°. Theoretical analyses indicate that no circular polarization is achieved for femtosecond lasers passing through quarter waveplate, and the induced ripple orientation is determined by the major axis of the polarization ellipse. The simulation results agree well with the experimental observations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
    [CrossRef]
  2. T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
    [CrossRef]
  3. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
    [CrossRef]
  4. A. J. Huis in’t Veld, and J. van de Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” in Proceeding on Laser Precision Microfabrication (LPM), Japan (2009).
  5. J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
    [CrossRef]
  6. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
    [CrossRef]
  7. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008).
    [CrossRef] [PubMed]
  8. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
    [CrossRef]
  9. A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
    [CrossRef]
  10. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
    [CrossRef]
  11. J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).
  12. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
    [CrossRef]
  13. L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultrashort laser pulses,” Appl. Phys. A (to be published). http://www.springerlink.com/content/h521l75956w57186/ .
  14. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982).
    [CrossRef]
  15. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012).
    [CrossRef] [PubMed]
  16. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005).
    [CrossRef] [PubMed]
  17. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
    [CrossRef]
  18. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006).
    [CrossRef]
  19. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
    [CrossRef]
  20. S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989).
    [CrossRef] [PubMed]
  21. F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).
  22. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
    [CrossRef]
  23. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004).
    [CrossRef]
  24. J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
    [CrossRef]
  25. H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
    [CrossRef]
  26. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007).
    [CrossRef] [PubMed]
  27. J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
    [CrossRef] [PubMed]
  28. J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
    [CrossRef]
  29. M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun.283(22), 4536–4540 (2010).
    [CrossRef]
  30. J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
    [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, 1999).
  32. A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
    [CrossRef]

2012

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express20(14), 14848–14856 (2012).
[CrossRef] [PubMed]

2010

J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun.283(22), 4536–4540 (2010).
[CrossRef]

2009

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

2008

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

2007

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007).
[CrossRef] [PubMed]

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

2006

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006).
[CrossRef]

J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
[CrossRef] [PubMed]

2005

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005).
[CrossRef] [PubMed]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

2004

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004).
[CrossRef]

2003

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

2002

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

1992

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

1989

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989).
[CrossRef] [PubMed]

1983

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

1982

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982).
[CrossRef]

1965

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Anhut, T.

Audouard, E.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Bai, Y. H.

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).

Beraun, J. E.

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

Bonse, J.

J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Borowiec, A.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Bounhalli, M.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Chen, J. K.

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

Cheng, Y.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Clark, S. E.

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989).
[CrossRef] [PubMed]

Colombier, J.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

Dong, Y.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004).
[CrossRef]

Emam-Ismail, M.

M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun.283(22), 4536–4540 (2010).
[CrossRef]

Emmony, D. C.

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989).
[CrossRef] [PubMed]

Fauchet, P. M.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982).
[CrossRef]

Faure, N.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Fujita, J.

Garrelie, F.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Grimes, L. E.

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

Guo, C.

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006).
[CrossRef]

J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
[CrossRef] [PubMed]

Guo, G.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Guo, X.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Haugen, H.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

Huang, M.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Hwang, T.

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Keilmann, F.

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

König, K.

Krüger, J.

J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Le Harzic, R.

Li, R.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Libenson, M. N.

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

Liu, W.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Ma, H.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

Ma, N.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Makin, V. S.

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

Malzer, S.

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Miyaji, G.

Miyazaki, K.

Molian, P.

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004).
[CrossRef]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

Pigeon, F.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

Reynaud, S.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Riemann, I.

Sauer, D.

Schuck, H.

Siegman, A. E.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Stoian, R.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Sun, Y.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

Trubaev, V. V.

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

Tzou, D. Y.

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

Wang, J.

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006).
[CrossRef]

J. Wang and C. Guo, “Permanent recording of light helicity on optically inactive metal surfaces,” Opt. Lett.31(24), 3641–3643 (2006).
[CrossRef] [PubMed]

Wang, L. J.

Wang, R.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Xu, N. S.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Xu, Z. Z.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Xue, L.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

Yang, J.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Yang, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

Ye, G.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Yoshifuji, T.

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhang, K.

Zhao, F. L.

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhao, Q. Z.

Zhong, J.

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Zhong, M.

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

Zhu, X.

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Appl. Phys. (Berl.)

J. Bonse and J. Krüger, J. “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Appl. Phys. (Berl.)108, 034903 (2010).

Appl. Phys. Lett.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007).
[CrossRef]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982).
[CrossRef]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett.97(14), 141101 (2010).
[CrossRef]

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

H. Ma, Y. Guo, M. Zhong, and R. Li, “Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal,” Appl. Phys., A Mater. Sci. Process.89(3), 707–709 (2007).
[CrossRef]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process.92(4), 1019–1024 (2008).
[CrossRef]

Appl. Surf. Sci.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197-198, 891–895 (2002).
[CrossRef]

F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser-melted quartz,” Appl. Surf. Sci.253, 7932–7936 (2007).

Chin. Phys. B

J. Zhong, G. Guo, J. Yang, N. Ma, G. Ye, X. Guo, R. Li, and H. Ma, “Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal,” Chin. Phys. B17(4), 1223–1226 (2008).
[CrossRef]

Int. J. Solids Struct.

J. K. Chen, J. E. Beraun, L. E. Grimes, and D. Y. Tzou, “Modeling of femtosecond laser-induced non-equilibrium deformation in metal films,” Int. J. Solids Struct.39(12), 3199–3216 (2002).
[CrossRef]

J. Appl. Phys.

J. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys.111(2), 024902 (2012).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

T. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys.108(7), 073523 (2010).
[CrossRef]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006).
[CrossRef]

J. Phys. D

J. Yang, R. Wang, W. Liu, Y. Sun, and X. Zhu, “Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses,” J. Phys. D42(21), 215305 (2009).
[CrossRef]

Opt. Commun.

M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun.283(22), 4536–4540 (2010).
[CrossRef]

Opt. Eng.

A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Surface electromagnetic waves in optics,” Opt. Eng.31(4), 718–730 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983).
[CrossRef]

Phys. Rev. B Condens. Matter

S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989).
[CrossRef] [PubMed]

Other

L. Xue, J. Yang, Y. Yang, Y. Wang, and X. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultrashort laser pulses,” Appl. Phys. A (to be published). http://www.springerlink.com/content/h521l75956w57186/ .

A. J. Huis in’t Veld, and J. van de Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” in Proceeding on Laser Precision Microfabrication (LPM), Japan (2009).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of the experimental setup.

Fig. 2
Fig. 2

SEM image of the periodic ripples formed on Cu surface with linearly polarized femtosecond lasers. The bi-directional arrows represent both the sample translation and the laser polarization directions.

Fig. 3
Fig. 3

(a) Evolvement of femtosecond laser-induced ripples on Cu with rotating QWP. At the upper left and right corners of each image the rotation angle of QWP and the obtained laser polarization are indicated, respectively. (b)-(c) Dependences of the slanting ripple orientation on the rotation angle of QWP for two different materials, where the measured data are represented by solid squares and the simulation results are indicated by the red curves.

Fig. 4
Fig. 4

Calculated polarization ellipticity as a function of the rotation angle of QWP for the incident femtosecond laser with different spectrum widths.

Fig. 5
Fig. 5

Sketched evolution of the polarization state for the femtosecond lasers passing through QWP with variable rotation angles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E x 2 A x 2 + E y 2 A y 2 2 E x E y A x A y cosφ= sin 2 φ
1t g 2 α tgα = A x 2 A y 2 A x A y cosϕ
cosφ= 0 g(λ)cosφ(λ)dλ 0 g(λ)dλ

Metrics