Abstract

We propose a method for slowing down light pulses by using composites doped with metal nanoparticles. The underlying mechanism is related to the saturable absorption near the plasmon resonance in a pump-probe regime, leading to strong dispersion of the probe refractive index and significantly reduced group velocities. By using a non-collinear scheme, we predict a total fractional delay of 43. This scheme promises simple and compact slow-light on-chip devices with tunable delay and THz bandwidth.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites

Kwang-Hyon Kim, Uwe Griebner, and Joachim Herrmann
Opt. Express 20(15) 16174-16179 (2012)

Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers

Kwang-Hyon Kim, Uwe Griebner, and Joachim Herrmann
Opt. Lett. 37(9) 1490-1492 (2012)

Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann
Opt. Express 18(7) 7488-7496 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin and R. S. Tucker ed., Slow light: science and applications (CRC Press, Boca Raton, 2008).
    [Crossref]
  2. R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
    [Crossref] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  4. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
    [Crossref]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  7. E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
    [Crossref] [PubMed]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  9. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [Crossref] [PubMed]
  10. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
    [Crossref]
  11. R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [Crossref] [PubMed]
  12. J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
    [Crossref]
  13. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
    [Crossref] [PubMed]
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
    [Crossref]
  15. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [Crossref] [PubMed]
  16. R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
    [Crossref]
  17. Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann, “Saturable absorption in composites doped with metal nanoparticles,” Opt. Express 18, 21918–21925 (2010).
    [Crossref] [PubMed]
  18. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
    [Crossref]
  19. K.-H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Lett. 37, 1490–1492 (2012).
    [Crossref] [PubMed]
  20. J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
    [Crossref]
  21. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
    [Crossref]
  22. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 3, 385–420 (1904).
  23. E.D. Palik ed., Handbook of optical constants of solids (Academic, Orlando, 1985).
  24. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
    [Crossref]
  25. E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and Cid B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21344 (2010).
    [Crossref] [PubMed]
  26. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
    [Crossref] [PubMed]

2012 (1)

2011 (1)

E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (1)

R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

2008 (2)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

2007 (3)

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
[Crossref] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

2006 (3)

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[Crossref]

2005 (3)

2004 (1)

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

2000 (1)

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1904 (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 3, 385–420 (1904).

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

Barbosa-Silva, R.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Bigot, J.-Y.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Boyd, R. W.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Boyd, R.W.

R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Brito-Silva, A. M.

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Cabrera-Granado, E.

E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
[Crossref] [PubMed]

Caldrerón, O. G.

E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
[Crossref] [PubMed]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[Crossref]

Cassan, E.

Chang, H. J.

Daunois, A.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

de Araújo, C. B.

de Araújo, Cid B.

De Sterke, C. M.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

Díaz, E.

E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eggleton, B. J.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

Falcão-Filho, E. L.

Foster, M. A.

Gaeta, A.

Gaeta, A. L.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Galembeck, A.

Ganeev, R.A.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Gao, D.

Gauthier, D. J.

R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Gehring, G.

Griebner, U.

Halté, V.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Hao, R.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Herrmann, J.

Herrmann, Joachim

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[Crossref]

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Husakou, Anton

Khanh, V. D.

Kim, K.-H.

Kim, Kwang-Hyon

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Lipson, M.

Littler, I. C. M.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Marris-Morini, D.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 3, 385–420 (1904).

Merle, J.-C.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Mok, J. T.

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

Okawachi, Y.

Oliveira, M. M.

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[Crossref]

Palik, E.D.

E.D. Palik ed., Handbook of optical constants of solids (Academic, Orlando, 1985).

Park, Q.-H.

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Roux, X. L.

Ryasnyanskii, A.I.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q.-H. Park, and D. J. Gauthier, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier,” Opt. Lett. 32, 906–908 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Schwertz, K.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Sharping, J.

Sharping, J. E.

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Shin, H.

Sobral-Filho, R. G.

Stepanov, A.L.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Usmanov, T.

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Vivien, L.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Xu, Q.

Zarbin, A. J. G.

Zhang, X.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Chem. Phys. (1)

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Nature Photon. (3)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nature Photon. 4, 776–779 (2010).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008).
[Crossref]

Nature Phys. (1)

J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nature Phys. 2, 775–780 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R.A. Ganeev, A.I. Ryasnyanskii, A.L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron. 36, 949–960 (2004).
[Crossref]

Philos. Trans. R. Soc. London A (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 3, 385–420 (1904).

Phys. Rev. A (1)

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[Crossref]

Phys. Rev. Lett. (4)

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

E. Cabrera-Granado, E. Díaz, and O. G. Caldrerón, “Slow light in molecular-aggregate nanofilms,” Phys. Rev. Lett. 107, 013901 (2011).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Science (2)

R.W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Other (2)

J. B. Khurgin and R. S. Tucker ed., Slow light: science and applications (CRC Press, Boca Raton, 2008).
[Crossref]

E.D. Palik ed., Handbook of optical constants of solids (Academic, Orlando, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of slow-light device based on a metal-nanoparticle composite.

Fig. 2
Fig. 2

Creation of absorption dip and strong dispersion of refractive index (a) by frequency-dependent coherent energy transfer from pump to probe, maximum fractional delay (b) and transmission (c) as functions of the pump wavelength for different pump intensities in a silica glass layer doped with very small Ag nanospheres. In (b) and (c), the filling factor is 2.5×10−2, the propagation length is 2 μm, τ = 1.23 ps.

Fig. 3
Fig. 3

Slow light in TiO2 film doped with Au nanorods with a diameter of 20 nm and a length of 66 nm for pump intensity of 6 MW/cm2 at 1550 nm. Other parameters are the same as in Fig. 3. In (a) and (b), probe pulse evolution and optical delay are shown, respectively. In (b), blue dotted line is the incident probe pulse, green dash-dotted and red solid lines are probe pulses corresponding to propagation lengths of 4 and 5 μm.

Fig. 4
Fig. 4

Dependencies of fractional delay F (blue solid line), transmittance T (green dotted line) on the pump intensity in TiO2 film doped with Au nanorods at 1550 nm. The diameter and length of nanorods are 20 nm and 66 nm, respectively. The propagation length is 5 μm, the filling factor 5 × 10−2, and the probe pulse duration 1.85 ps.

Fig. 5
Fig. 5

Delay for probe with a duration of 1.85 ps and pump intensity of 0.28 MW/cm2 in TiO2 film with thickness of 1 μm in non-collinear configuration: (a)- configuration, (b) and (c) - evolution of probe pulse. Other parameters are the same as in Fig. 3. In (c), blue dashed line is the incident pulse and solid lines are the delayed pulses corresponding to propagation lengths L up to 90 μm with a equidistance of 6 μm from the left to the right side in the order.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ε m ( t ) = χ m ( 3 ) τ t | E enh ( t ) | 2 e t t τ d t ,
ε m ( t ) = ε m 0 + χ m ( 3 ) { | E 0 enh | 2 + 2 Re [ E 0 enh * τ 1 e i Ω t × 0 E pr enh ( t + t ) e ( i Ω + 1 τ ) t d t ] } ,
ε m ( ω 0 ) = ε m 0 + χ m ( 3 ) | E 0 enh | 2 , ε m ( ω p r ) = ε m 0 + χ m ( 3 ) ( 1 + 1 1 + i Ω τ ) | E 0 enh | 2 .
x ( ω 0 ) = 3 ε h ε m 0 + 2 ε h + χ m ( 3 ) | x ( ω 0 ) E 0 | 2 ,
ε eff ( ω p r ) ε h ε eff ( ω p r ) + 2 ε h = f ε m ( ω p r ) ε h ε m ( ω p r ) + 2 ε h
D = | I out ( t + t ) I in ( t ) | d t I out ( t + t ) d t ,

Metrics