Abstract

A simple approach to generate high energy, frequency and bandwidth tunable multicycle THz pulses by optical rectification (OR) of spatially shaped femtosecond laser pulses in the lithium niobate (LN) crystal is proposed and demonstrated. A one dimensional binary shadow mask is used as a laser beam shaper. By building the mask’s image in the bulk LN crystal with various demagnifications, the frequency of THz generation was tuned in the range of 0.3 – 1.2 THz. There exist also an opportunity to tune the bandwidth of THz generation from 20 GHz to approximately 1 THz by changing the optical beam size on the crystal. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 0.18 μJ/THz for ~1 W pump power at 1 kHz repetition rate.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  2. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5(8), 559–576 (2008).
    [CrossRef]
  3. Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, “Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion,” Opt. Lett.36(9), 1608–1610 (2011).
    [CrossRef] [PubMed]
  4. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
    [CrossRef] [PubMed]
  5. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
    [CrossRef]
  6. J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
    [CrossRef]
  7. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrowband, picosecond THz pulses by two-beam excitation,” Opt. Express12(19), 4650–4658 (2004).
    [CrossRef] [PubMed]
  8. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express11(20), 2486–2496 (2003).
    [CrossRef] [PubMed]
  9. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
    [CrossRef]
  10. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
    [CrossRef]
  11. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
    [CrossRef] [PubMed]
  12. C. Zhang, Y. Avetisyan, A. Glosser, I. Kawayama, H. Murakami, and M. Tonouchi, “Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate,” Opt. Express20(8), 8784–8790 (2012).
    [CrossRef] [PubMed]
  13. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
    [CrossRef]
  14. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express14(6), 2263–2276 (2006).
    [CrossRef] [PubMed]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % MgO-doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997).
    [CrossRef]
  16. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
    [CrossRef]
  17. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B25(7), B6–B19 (2008).
    [CrossRef]

2012 (1)

2011 (2)

Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, “Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion,” Opt. Lett.36(9), 1608–1610 (2011).
[CrossRef] [PubMed]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
[CrossRef]

2008 (2)

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2001 (1)

2000 (2)

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

1997 (1)

1994 (1)

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Ahn, J.

Auston, D. H.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Averitt, R. D.

Avetisyan, Y.

Bartal, B.

Beigang, R.

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
[CrossRef]

DeCamp, M.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Ding, Y. J.

Efimov, A. V.

Froberg, N. M.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Galvanauskas, A.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Glosser, A.

Hebling, J.

Hoffmann, M. C.

Hu, B. B.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Ito, H.

Jiang, Y.

Jundt, D.

Kawayama, I.

Kitaeva, G. Kh.

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5(8), 559–576 (2008).
[CrossRef]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrowband, picosecond THz pulses by two-beam excitation,” Opt. Express12(19), 4650–4658 (2004).
[CrossRef] [PubMed]

L’huillier, J.

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Li, D.

Meade, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Murakami, H.

Nelson, K. A.

Norris, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Norris, T. B.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

Rau, C.

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Sasaki, Y.

Small, D. L.

Stepanov, A. G.

Taylor, A. J.

Theuer, M.

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Tonouchi, M.

Torosyan, G.

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

Vodopyanov, K. L.

Weiss, C.

Weling, A. S.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Werley, C. A.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
[CrossRef]

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

Yeh, K.-L.

Yokoyama, H.

Zelmon, D. E.

Zhang, C.

Zhou, X.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
[CrossRef]

Zotova, I. B.

Appl. Phys. B (1)

J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000).
[CrossRef]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5(8), 559–576 (2008).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic view of THz wave generation in PPLN crystal, where black and white regions represent crystal parts with opposite sign of the nonlinear coefficient, (b) binary shadow mask (SM), (c) schematic view of THz generation in SM-covered LN crystal, where black and white regions represent the dark and illuminated parts of the crystal, (d) corresponding wave vectors diagram.

Fig. 2
Fig. 2

(a) THz waveforms measured with the masks having periods of Λ = 100, 154, and 200 μm, respectively. (b) Corresponding Fourier spectra.

Fig. 3
Fig. 3

Generation frequency versus image magnification for masks with periods Λ = 154 μm (red triangles) and Λ = 200 μm (black squires). Solid lines show dependencies calculated with Eq. (1). The inset gives the spectra measured with various image magnifications.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν THz = c ΛM n THz 2 n g 2
t im = w y ν THz Λ = w y n THz 2 n g 2 c M

Metrics