Abstract

We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
    [CrossRef]
  3. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
    [CrossRef]
  4. A. Roeseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  5. N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).
  6. J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
    [CrossRef]
  7. J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
  8. T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
    [CrossRef]
  9. B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
    [CrossRef]
  10. D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. Journal3(3), 450–461 (2011).
    [CrossRef]
  11. C. D. Farmer, Fabrication and evaluation of In0.52Al0.48As/In0.53Ga0.47As/InP quantum cascade lasers, PhD thesis submitted to University of Glasgow, Glasgow (2000).
  12. D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
    [CrossRef]
  13. D. G. Revin, R. S. Hassan, A. B. Krysa, Y. Wang, A. Belyanin, K. Kennedy, C. N. Atkins, and J. W. Cockburn, “Spectroscopic study of transparency current in mid-infrared quantum cascade lasers,” Opt. Express20(17), 18925–18930 (2012).
    [CrossRef] [PubMed]
  14. D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “An integrated tunable birefringent filter for quantum cascade lasers,” presented at the International Quantum Cascade Lasers School & Workshop 2012, Vienna, Austria, 2–6 Sept. 2012.
  15. B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express20(18), 20545–20550 (2012).
    [CrossRef] [PubMed]

2012 (4)

2011 (3)

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. Journal3(3), 450–461 (2011).
[CrossRef]

2009 (2)

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
[CrossRef]

2008 (1)

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

2006 (1)

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Atkins, C. N.

Axner, O.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

Belyanin, A.

Bregenzer, J. J.

Capasso, F.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cockburn, J. W.

D. G. Revin, R. S. Hassan, A. B. Krysa, Y. Wang, A. Belyanin, K. Kennedy, C. N. Atkins, and J. W. Cockburn, “Spectroscopic study of transparency current in mid-infrared quantum cascade lasers,” Opt. Express20(17), 18925–18930 (2012).
[CrossRef] [PubMed]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Dhirhe, D.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Diehl, L.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Edamura, T.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Evans, A.

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Furuta, S.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Hassan, R. S.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Holmes, B. M.

B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express20(18), 20545–20550 (2012).
[CrossRef] [PubMed]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. Journal3(3), 450–461 (2011).
[CrossRef]

J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

Hutchings, D. C.

B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express20(18), 20545–20550 (2012).
[CrossRef] [PubMed]

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. Journal3(3), 450–461 (2011).
[CrossRef]

J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Ironside, C. N.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Kan, H.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Kelly, A. E.

Kennedy, K.

Kluczynski, P.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

Krysa, A. B.

Lundqvist, S.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

Marsh, J. H.

McKee, A.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

McMaster, S.

Meredith, W.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Naeem, M. A.

Nshii, C. C.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Pflugle, C.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Razeghi, M.

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

Revin, D. G.

D. G. Revin, R. S. Hassan, A. B. Krysa, Y. Wang, A. Belyanin, K. Kennedy, C. N. Atkins, and J. W. Cockburn, “Spectroscopic study of transparency current in mid-infrared quantum cascade lasers,” Opt. Express20(17), 18925–18930 (2012).
[CrossRef] [PubMed]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slight, T. J.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Slivken, S.

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

Sorel, M.

Tandoi, G.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Wang, Q. J.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Wang, Y.

Westberg, J.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Yu, J. S.

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

Yu, N.

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

Zhang, S. Y.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Appl. Phys. B: Lasers and Optics (1)

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B: Lasers and Optics103(2), 451–459 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

N. Yu, Q. J. Wang, C. Pflugle, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett.94(15), 151101 (2009).

IEEE J. Quantum Electron. (1)

J. S. Yu, A. Evans, S. Slivken, and M. Razeghi, “High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).

IEEE Photon. Journal (1)

D. C. Hutchings and B. M. Holmes, “A waveguide polarization toolset design based on mode beating,” IEEE Photon. Journal3(3), 450–461 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ ~ 3.35 mm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett.18(1), 43–45 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Opt. Express (2)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Other (3)

D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “An integrated tunable birefringent filter for quantum cascade lasers,” presented at the International Quantum Cascade Lasers School & Workshop 2012, Vienna, Austria, 2–6 Sept. 2012.

C. D. Farmer, Fabrication and evaluation of In0.52Al0.48As/In0.53Ga0.47As/InP quantum cascade lasers, PhD thesis submitted to University of Glasgow, Glasgow (2000).

A. Roeseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the chip layout of a quantum cascade laser that includes a gain section, lateral distributed Bragg reflector and an integrated polarization mode converter (PMC), the trenches of the PMC were etched using the reactive ion etching lag effect. There is no electrical contact to the PMC section. (b) SEM image of fully fabricated and mounted integrated PMC device.

Fig. 2
Fig. 2

(a) and (b) Show the simulated mode profiles of the TM and TE components respectively of the lowest order guided mode (without asymmetric cross-section). (c) and (d) show the TM and TE components respectively of the lowest order guided mode within the asymmetric section of design 1. (e) and (f) show the TM and TE components respectively of lowest order guided mode within the asymmetric section of design 2. Both z = 10 μm just after tapered region of PMC.

Fig. 3
Fig. 3

(a) Calculated TE conversion versus propagation distance using BPM of two designs. (b) Plot of etch depth vs. trench width at etch times of 6 minutes for QCL wafer. Inset SEM image shows the etch profile of a PMC waveguide after ICP etching (design 1).

Fig. 4
Fig. 4

(a) Shows the SEM top view of integrated PMCs device after ICP etching. (b) Magnified SEM view of taper input section of PMC. (c) Magnified SEM view of output section of PMC.

Fig. 5
Fig. 5

(a) L-I characteristics of 265μm PMC device with inset showing the TM, TE and total emission spectra. (b) L-I characteristics of QCLs DBR and no PMC, 56 μm PMC and 119 μm PMC.

Fig. 6
Fig. 6

Polar plots of normalized output power from PMC & DBR facet of the QCL as function of wire-grid polarizer angle for different PMC lengths and asymmetric waveguide cross-sections.

Tables (2)

Tables Icon

Table 1 Refractive indices of the QCL material at λ~4.6 μm as used in the model to calculate TM & TE mode profiles (obtained from [11]).

Tables Icon

Table 2 Compares calculated and measured TE polarization fraction as a function of PMC length.

Metrics