Abstract

We experimentally demonstrate a compact and efficient arrangement for fiber delivery of sub-30 fs energetic light pulses at 800 nm. Pulses coming from a broadband Ti:Sapphire oscillator are negatively pre-chirped by a grism-pair stretcher that allows for the control of second and third orders of dispersion. At the direct exit of a 2.7-m long large mode area (LMA) photonic crystal fiber 1-nJ pulses are temporally compressed to 29 fs producing close to 30 kW of peak power. The tunability of the device is studied. Comparison between LMA fibers and standard SMF fibers is also discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum.73(9), 3258–3264 (2002).
    [CrossRef]
  2. A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
    [CrossRef] [PubMed]
  3. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express1(4), 1159–1172 (2010).
    [CrossRef] [PubMed]
  4. S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A82(2), 025801 (2010).
    [CrossRef]
  5. T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett.36(4), 442–444 (2011).
    [CrossRef] [PubMed]
  6. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
    [CrossRef]
  7. J. Bethge, G. Steinmeyer, S. Burger, F. Lederer, and R. Iliew, “Guiding properties of chirped photonic crystal fibers,” J. Lightwave Technol.27(11), 1698–1706 (2009).
    [CrossRef]
  8. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009).
    [CrossRef] [PubMed]
  9. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
    [CrossRef]
  10. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett.31(22), 3363–3365 (2006).
    [CrossRef] [PubMed]
  11. T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz, and L. Veisz, “Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave,” Opt. Express18(26), 27900–27909 (2010).
    [CrossRef] [PubMed]
  12. A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express18(21), 21973–21980 (2010).
    [CrossRef] [PubMed]
  13. V. Chauhan, P. Bowlan, J. Cohen, and R. Trebino, “Single-diffraction-grating and grism pulse compressors,” J. Opt. Soc. Am. B27(4), 619–624 (2010).
    [CrossRef]
  14. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).
  16. M. Moenster, G. Steinmeyer, R. Iliew, F. Lederer, and K. Petermann, “Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers,” Opt. Lett.31(22), 3249–3251 (2006).
    [CrossRef] [PubMed]
  17. N. K. T. Photonics, “LMA fiber dispersion overview,” http://www.nktphotonics.com/files/files/LMA_fiber_dispersion_overview.pdf
  18. C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett.23(4), 283–285 (1998).
    [CrossRef] [PubMed]
  19. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett.28(20), 1873–1875 (2003).
    [CrossRef] [PubMed]
  20. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett.29(22), 2602–2604 (2004).
    [CrossRef] [PubMed]
  21. Z. Jiang, S. D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated ~500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett.30(12), 1449–1451 (2005).
    [CrossRef] [PubMed]
  22. N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
    [CrossRef]
  23. L. Kh. Muradyan, N. L. Markaryan, T. A. Papazyan, and A. A. Ohanyan, “Self-action of chirped pulses: spectral compression,” Conf. on Lasers and Electro-Optics US., Tech. Dig. CTUH32, 120–121 (1990).
  24. M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
    [CrossRef]
  25. M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
    [CrossRef]
  26. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot frequency-resolved optical gating,” Opt. Express11(1), 68–78 (2003).
    [CrossRef] [PubMed]
  27. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
    [CrossRef] [PubMed]
  28. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Robust, single-moded, broadband transmission and pulse compression in a record Aeff (2100 μm2) higher-order-mode fiber,” ECOC Conf. 6, 37–38 (2005).

2011 (2)

2010 (5)

2009 (2)

2008 (2)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (1)

2003 (2)

2002 (2)

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum.73(9), 3258–3264 (2002).
[CrossRef]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
[CrossRef] [PubMed]

1998 (1)

1993 (2)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

1991 (1)

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
[CrossRef]

Akturk, S.

Barthelemy, A.

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
[CrossRef] [PubMed]

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
[CrossRef]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Bethge, J.

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Bowlan, P.

Buenting, U.

Buettner, A.

Burger, S.

Cavalieri, A. L.

Chang, C. C.

Chauhan, V.

Cheng, Z.

Cohen, J.

Crooker, S. A.

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum.73(9), 3258–3264 (2002).
[CrossRef]

Dou, T. H.

Durfee, C.

Feurer, T.

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Foster, M. A.

Fritz, D. M.

Froehly, C.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
[CrossRef]

Gaeta, A. L.

Gaudiosi, D. M.

Gibbs, H.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

Gibson, E. A.

Gordon, R. J.

Gu, X.

Herrmann, J.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A82(2), 025801 (2010).
[CrossRef]

Hofer, M.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Hu, J.-J.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

Huff, R.

Husakou, A.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A82(2), 025801 (2010).
[CrossRef]

Iliew, R.

Im, S. J.

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A82(2), 025801 (2010).
[CrossRef]

Jiang, Z.

Jimenez, R.

Kane, S.

Kapteyn, H. C.

Kimmel, M.

Kracht, D.

Krausz, F.

Larson, A. M.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

Le, T.

Leaird, D. E.

Lederer, F.

Lee, S. H.

Lefort, C.

Lelek, M.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
[CrossRef]

Louradour, F.

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
[CrossRef] [PubMed]

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
[CrossRef]

Mansuryan, T.

Marcus, G.

Markaryan, N. L.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
[CrossRef]

Moenster, M.

Moll, K. D.

Muradyan, L. K.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
[CrossRef]

Myaing, M.

Nakamura, H.

Neumann, J.

O’Shea, P.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Omenetto, F. G.

Ouzounov, D. G.

Papazyan, T. A.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
[CrossRef]

Petermann, K.

Psaltis, D.

Reis, D. A.

Sardesai, H. P.

Skibina, J.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Squier, J.

Steinmeyer, G.

Stingl, A.

Tautz, R.

Tempea, G.

Tournois, P.

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

Trebino, R.

Tsang, M.

Veisz, L.

Wandt, D.

Webb, W. W.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Weiner, A. M.

Yang, S. D.

Yeh, A. T.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

Zhao, Y.

Zipfel, W. R.

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics2(11), 679–683 (2008).
[CrossRef]

Opt. Commun. (1)

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun.261(1), 124–129 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (9)

E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett.31(22), 3363–3365 (2006).
[CrossRef] [PubMed]

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
[CrossRef] [PubMed]

M. Moenster, G. Steinmeyer, R. Iliew, F. Lederer, and K. Petermann, “Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers,” Opt. Lett.31(22), 3249–3251 (2006).
[CrossRef] [PubMed]

T. Le, J. Bethge, J. Skibina, and G. Steinmeyer, “Hollow fiber for flexible sub-20-fs pulse delivery,” Opt. Lett.36(4), 442–444 (2011).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
[CrossRef] [PubMed]

C. C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett.23(4), 283–285 (1998).
[CrossRef] [PubMed]

M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett.28(20), 1873–1875 (2003).
[CrossRef] [PubMed]

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett.29(22), 2602–2604 (2004).
[CrossRef] [PubMed]

Z. Jiang, S. D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated ~500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett.30(12), 1449–1451 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

S. J. Im, A. Husakou, and J. Herrmann, “Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers,” Phys. Rev. A82(2), 025801 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum.73(9), 3258–3264 (2002).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron.21(7), 783–785 (1991).
[CrossRef]

Tissue Eng. Part B Rev. (1)

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev.14(1), 119–131 (2008).
[CrossRef] [PubMed]

Other (4)

N. K. T. Photonics, “LMA fiber dispersion overview,” http://www.nktphotonics.com/files/files/LMA_fiber_dispersion_overview.pdf

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).

L. Kh. Muradyan, N. L. Markaryan, T. A. Papazyan, and A. A. Ohanyan, “Self-action of chirped pulses: spectral compression,” Conf. on Lasers and Electro-Optics US., Tech. Dig. CTUH32, 120–121 (1990).

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Robust, single-moded, broadband transmission and pulse compression in a record Aeff (2100 μm2) higher-order-mode fiber,” ECOC Conf. 6, 37–38 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Monochromatic optical path inside the grism-stretcher. M denotes a retro-reflecting plane mirror. N is the group index of the prism glass, α the prism apex and d the grating groove period and θ the incidence angle. Lprism = OT2 and Ltip = OT1.

Fig. 2
Fig. 2

Calculated pulses and spectra at the direct output of 2.7-m long LMA fiber for two different adjustments of the grism-based stretcher at fixed Ltip = 59 mm. (a) and (b): θ = 39.884° and Lprism = 14.404 mm; the stretcher perfectly compensates for both SOD and TOD of the fiber while a net uncompensated FOD (i.e. −4.79e + 5 fs4) can be seen on (b); the compressed pulse duration is equal to 40 fs (FWHM) with a peak power amounting to 19 kW for a 1-nJ pulse - (c) and (d): θ = 38.925 ° and Lprism = 14.385 mm; now the stretcher is adjusted so that TOD is compensated and that net SOD and net FOD partially compensate for each other; spectral phase variation amplitude across the spectrum is somewhat smaller; as a consequence the pulse duration is smaller (i.e. 26.6 fs) and the peak power is higher (i.e. more than 30 kW for a 1-nJ pulse).

Fig. 3
Fig. 3

Experimental setup. The system was composed of three main elements: a Ti:Sa femtosecond oscillator, an anomalous stretcher made of two antiparallel grisms each of them being the assembly of a prism in close contact with a reflective diffraction grating, and a 2.7-meter-long large mode area microstructured (LMA) fiber. The stretcher was adjusted so that the pulse was optimally compressed at the direct exit of the LMA fiber. The main freedom degrees are θ, LPrism = OT2 and LTip = OT1; CM ≡ cut mirror; M ≡ plane retro-reflecting mirror.

Fig. 4
Fig. 4

(a): Interferometric autocorrelation. (b): Intensity autocorrelation indicate very short durations for 1 nJ pulses at the direct exit of a 2.7-meter-long LMA fiber. Both of the two autocorrelations are related to sub-20-fs (FWHM) duration (respectively 17.8 fs and 19.9 fs for secant hyperbolic square and Gaussian shape pulses).

Fig. 5
Fig. 5

(a) and (b): Coherent pulse characterization performed through SPIRIT (Spectral Interferometry Resolved In Time) at the exit of a 2.7-meter-long LMA fiber for 1-nJ pulses. Pulse duration amounted to 29 fs (FWHM) with 31.6-kW peak power; (c) red solid line: Autocorrelation measured with a non collinear second order autocorrelator – blue circles: calculated autocorrelation from SPIRIT trace. Those results were obtained without contribution to dispersion coming from the oscillator.

Fig. 6
Fig. 6

(a): Spectral densities at the oscillator output (red line), at the grism-stretcher output (green line) and at the LMA-PC fiber output (black line) for 1 nJ pulses. For those three locations the bandwidths were respectively equal to 71 nm, 62.5 nm and 51 nm. Grism-stretcher filtering and spectral compression coming from nonlinear propagation inside the fiber are the reasons for bandwidth variations. (b): Pulse duration and spectral bandwidth at the output of the 2.7-meters-long LMA fiber as a function of output power. Triangle and square represent experimental measurements while solid lines relate to calculations.

Fig. 7
Fig. 7

(a): Intensity autocorrelations at the output of a 2.7 m long LMA fiber for 1 nJ pulses @ 820 nm for different initial bandwidths emitted by the oscillator that fed the device. (b): 70 nm for the initial bandwidth appear to be the optimum in terms of pulse shortness and brightness.

Fig. 8
Fig. 8

Output pulse duration as a function of carrier wavelength varying across the full tunability range (i.e. 100 nm) of our MICRA-5 oscillator when adjusted with 20-nm-bandwidth. The tunability of our femtosecond fiber delivery system expands across more than 100-nm-bandwidth from 750 to 850 nm. The optimal carrier wavelength in terms of pulse shortness appeared to be equal to 820 nm.

Fig. 9
Fig. 9

Pulse delivered at the output of a 2.7-meters-long standard PM-SM fiber. Interferometric (a) and intensity (b) autocorrelations are both related to 28-fs-duration (FWHM) pulse having 1-nJ-energy.

Fig. 10
Fig. 10

(a): Measured pulse duration as a function of output average power at the output of a 2.7-meter-long fiber, red squares with a standard PM-SM fiber, green circles with a LMA fiber. Solid lines are corresponding calculations (red line for the standard SMF and green line for the LMA SMF). (b): Calculated spectra at the fiber exit for 200 mW average power @ 80 MHz (i.e. 2.5 nJ). Spectral compression is much stronger in the standard SMF (red line) which has increased nonlinearity. (c): Calculated pulse temporal profiles. LMA SMF (green line) gave a cleaner and brighter pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t g = 2 c [ N( A 1 B 1 + B 1 C 1 )+ C 1 C 2 +N( C 2 B 2 + B 2 A 2 ) A 2 I 2 ].

Metrics