Abstract

The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×104cycles/Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. LISA International Science Team (LIST), “LISA assessment study report: yellow book,” Eur. Space Agency, 1–141 (2011).
  2. NGO science working team, “NGO assessment study report: yellow book,” Eur. Space Agency, 1–153 (2011).
  3. “Concepts for the NASA gravitational-wave mission,” nSPIRES-NASA Request for Information: NNH11ZDA019L, (2011). http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php
  4. M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
    [CrossRef]
  5. F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
    [CrossRef]
  6. D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
    [CrossRef]
  7. W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
    [CrossRef]
  8. S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
    [CrossRef]
  9. S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
    [CrossRef]

2011

LISA International Science Team (LIST), “LISA assessment study report: yellow book,” Eur. Space Agency, 1–141 (2011).

NGO science working team, “NGO assessment study report: yellow book,” Eur. Space Agency, 1–153 (2011).

2010

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
[CrossRef]

2006

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

2004

F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
[CrossRef]

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

2003

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

Armstrong, J. W.

F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
[CrossRef]

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

Barke, S.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Cruz, R.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

Danzmann, K.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Estabrook, F. B.

F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
[CrossRef]

Halverson, P. G.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

Heinzel, G.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Klipstein, W.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

Mitryk, S.

S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
[CrossRef]

Mueller, G.

S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
[CrossRef]

Peters, R.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

Shaddock, D. A.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

Sheard, B.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Spero, R.E.

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

Sylvestre, J.

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

Tinto, M.

F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
[CrossRef]

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

Tröbs, M.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Vallisneri, M.

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

Wand, V.

S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
[CrossRef]

Ware, B.

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

AIP Conf. Proc.

W. Klipstein, P. G. Halverson, R. Peters, R. Cruz, and D. A. Shaddock, “Clock noise removal in LISA,” in AIP Conf. Proc.873, pp. 312–318 (2006).
[CrossRef]

Appl. Phys. B: Lasers Opt.

S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B: Lasers Opt.98(1), 33–39 (2010).
[CrossRef]

Class. Quantum Grav.

S. Mitryk, V. Wand, and G. Mueller, “Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator,” Class. Quantum Grav.27(8), 084012 (2010).
[CrossRef]

Eur. Space Agency

LISA International Science Team (LIST), “LISA assessment study report: yellow book,” Eur. Space Agency, 1–141 (2011).

NGO science working team, “NGO assessment study report: yellow book,” Eur. Space Agency, 1–153 (2011).

Phys. Rev. D

M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, “Implementation of time-delay interferometry for LISA,” Phys. Rev. D67(12), 122003 (2003).
[CrossRef]

F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D69(8), 082001 (2004).
[CrossRef]

D. A. Shaddock, B. Ware, R.E. Spero, and M. Vallisneri, “Postprocessed time-delay interferometry for LISA,” Phys. Rev. D70(8), 1101–1106 (2004).
[CrossRef]

Other

“Concepts for the NASA gravitational-wave mission,” nSPIRES-NASA Request for Information: NNH11ZDA019L, (2011). http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Set up of the experiment to measure the differential noise added to the clock transfer by two frequency synthesizers. A common MHz signal is frequency up-converted to the GHz range by two separate frequency synthesizers. These two signals are heterodyned down to 1 MHz signals by electronic mixing with a common GHz signal.

Fig. 2
Fig. 2

Linear spectral density of the differential phase noise added by two Rupptronik frequency synthesizers. Also plotted is the linear spectral density of the same measurement using Stanford Clock Generators as frequency synthesizers and the phase noise requirement on the clock noise transfer. The Rupptronik frequency synthesizers meet the requirement for all frequencies while the clock generators do not.

Fig. 3
Fig. 3

The experimental set up for the test of the EOM’s phase stability at 2 GHz. Laser 2 is phase locked to the reference laser at an offset frequency of 1.999 GHz. Laser 2 is also modulated with a 2.000 GHz signal creating a lower sideband at 1 MHz. The lower sidebands is filtered and measured at channel 1 of the phasemeter while the carrier signal is electronically mixed with the modulation signal. The output of the mixer is filtered leaving a 1 MHz signal which is measured at channel 2.

Fig. 4
Fig. 4

Linear spectral density of the results of the noise in the clock noise transfer using the EOMs at 2 GHz. The EOM meets the requirement at all frequencies.

Fig. 5
Fig. 5

The experimental set up of the combined test of both the frequency synthesizers and the EOMs. Not shown is that the 50 MHz signal that is frequency up-converted is also used to clock the phasemeter.

Fig. 6
Fig. 6

Linear spectral density of the results of the differential phase noise added by the frequency synthesizer and EOM combination. The frequency synthesizers and EOMs together meet the requirement at all frequencies.

Fig. 7
Fig. 7

The set-up for the electronic test of the clock noise transfer concept using frequency synthesizers. A common 20 MHz signal is split and measured on channels 1 and 3 of the phasemeter. Channels 1 and 3 are each clocked by independent 50 MHz clocks. Each clock signal is up-converted, one to 2.000 GHz and the other to 2.001 GHz. The up-converted clock signals are electronically mixed, filtered, and sent to channel 2.

Fig. 8
Fig. 8

Linear spectral density of the results of the electronic test of the clock noise transfer concept using frequency synthesizers. The red curve is the 20 MHz common signal, the blue curve is the mixed signal from the frequency synthesizers, the cyan and magenta curves are the result of Eq. (13) before and after the application of a time varying fractional delay filter.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

10 6 1 + ( 2.8 mHz f ) cycles H z
Δ S 2 α ν ν clk 10 6 1 + ( 2.8 mHz f ) cycles Hz
2 × 10 4 1 + ( 2.8 mHz f ) cycles H z
S L = Φ ( t ) Φ ( t )
C = ϕ ( t )
Φ ( t ) ϕ ( t )
C C = ϕ ( t ) ν ν clk Φ clk ( t )
S S L = ϕ ( t ) ( α 1 α 2 ) Φ clk ( t ) ( β 1 ( t ) β 2 ( t ) ) ( ν ( α 1 α 2 ) ν clk ) ν clk Φ clk ( t )
SS L = ϕ ( t ) ( β 1 ( t ) β 2 ( t ) ) ν ν clk Φ clk ( t )
S 1 = ϕ ( t ) f F 1 Φ 1 ( t )
S 2 = α 1 Φ 1 ( t ) α 2 Φ 2 ( t ) α 1 F 1 α 2 F 2 F 1 Φ 1 ( t ) = α 2 Φ 2 ( t ) + α 2 F 2 F 1 Φ 1 ( t )
S 3 = ϕ ( t ) f F 2 Φ 2 ( t )
S 1 S 3 f F 2 α 2 S 2

Metrics