Abstract

We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
    [CrossRef] [PubMed]
  2. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)
  3. R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
    [CrossRef]
  4. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
    [CrossRef] [PubMed]
  5. G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
    [CrossRef]
  6. G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
    [CrossRef] [PubMed]
  7. T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
    [CrossRef]
  8. T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
    [CrossRef]
  9. K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
    [CrossRef]

2006

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

2003

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

2002

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

2001

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
[CrossRef] [PubMed]

1999

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

1998

T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
[CrossRef]

Bali, S.

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Barrett, M. D.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
[CrossRef] [PubMed]

Cennini, G.

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

Chapman, M. S.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
[CrossRef] [PubMed]

Dumke, R.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Freed, C.

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Geckeler, C.

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

Gehm, M. E.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Gomez, E.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Granade, S. R.

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Grimm, R.

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

Hemmer, S. L.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

Herbig, J.

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

Johanning, M.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Jones, K. M.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Knize, R. J.

T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
[CrossRef]

Lett, P. D.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Mark, M.

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

Naegerl, H.-C.

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

O’Hara, K. M.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Patterson, B. M.

T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
[CrossRef]

Ritt, G.

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

Sauer, J. A.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
[CrossRef] [PubMed]

Savard, T. A.

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Takekoshi, T.

T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
[CrossRef]

Thomas, J. E.

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Weber, T.

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

Weinstein, J. D.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Weitz, M.

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

Appl. Phys. B: Lasers Opt.

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “Bose-Einstein condensation in a CO2-laser optical dipole trap,” Appl. Phys. B: Lasers Opt.77, 773 (2003)
[CrossRef]

New J. Phys.

R. Dumke, M. Johanning, E. Gomez, J. D. Weinstein, K. M. Jones, and P. D. Lett, “All-optical generation and photoassociative probing of sodium Bose-Einstein condensates,” New J. Phys.8, 64 (2006)
[CrossRef]

Phys. Rev. Lett.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001)
[CrossRef] [PubMed]

S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas, “All-optical production of a degenerate fermi gas,” Phys. Rev. Lett.88, 120405 (2002)
[CrossRef] [PubMed]

G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, “All-optical realization of an atom laser,” Phys. Rev. Lett.91, 240408 (2003)
[CrossRef] [PubMed]

T. Takekoshi, B. M. Patterson, and R. J. Knize, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett.81, 5105 (1998)
[CrossRef]

K. M. O’Hara, S. R. Granade, M. E. Gehm, T. A. Savard, S. Bali, C. Freed, and J. E. Thomas, “Ultrastable CO2 laser trapping of lithium fermions,” Phys. Rev. Lett.82, 4204 (1999)
[CrossRef]

Science

T. Weber, J. Herbig, M. Mark, H.-C. Naegerl, and R. Grimm, “Bose-Einstein condensation of cesium,” Science299, 232 (2003)
[CrossRef]

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate fermi gas of atoms,” Science298, 5601 (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for locating the CO2 laser beam within the trapped cloud of MOT atoms. The three pairs of retro-reflected MOT beams excite fluorescence in the atoms of the MOT. The CO2 beam is located in the general vicinity of the trapped cloud of atoms. The mirror M1 reflects the fluorescent light from the MOT. The lens L1 collects the fluorescent light and creates an image of the MOT. In the image plane a D-shaped mirror (M2) cuts the fluorescent signal into two halves. These are individually focused by two lenses (L2 and L3) onto two avalanche photodiodes (APD1 and APD2). The label on the coordinate system is used throughout this paper.

Fig. 2
Fig. 2

(a) Electronic noise and noise caused by scattered light. (b) Noise spectrum in the presence of the MOT. In both cases the signal of the two APDs are substracted and the difference is recorded.

Fig. 3
Fig. 3

(a) Geometry of the split image and laser alignment. The horizontal line symbolizes where the D-shaped mirror M2 splits the image into two halves. The two halves of the image are then detected with the two APDs. The coordinate system indicates how the coordinates at the CO2 laser focusing lens translate at the MOT image plane. z is the propagation axis of the laser beam and passes through the center of the MOT. x (y) is the horizontal (vertical) axis at the lens position. The three focused laser beams (1–3) show the location of the CO2 focus within the cloud for three differnet positions along the y-axis. The green beam (2) corresponds to the focus being aligned to the center of the MOT along the y-dimension, where the overall signal vanishes (see Fig.(c)) (b)–(d) Signal due to the imbalance caused by the pulsed CO2 laser as a function of position. The focus of the laser beam is moved along one dimension, while the other two are held constant. (b) The focus of the laser beam is moved along the x-axis. (c) The focus of the laser beam is moved along the y-axis. (d) The focus of the laser beam is moved along the z-axis (along the beam propagation axis). Error bars indicate statistical uncertainties. The inset in the upper left corner indicates the alignment in the other two dimensions.

Metrics