Abstract

We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Berlin, 2004).
  2. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol.24, 2701–2719 (2006).
    [CrossRef]
  3. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
    [CrossRef]
  4. E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
    [CrossRef]
  5. M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
    [CrossRef]
  6. K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.
  7. T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
    [CrossRef]
  8. N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
    [CrossRef]
  9. G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
    [CrossRef]
  10. N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
    [CrossRef]
  11. M. Todaro, J. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, and J. G. McInerney, “Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3 μm passively mode-locked quantum-dot lasers,” Opt. Lett.31, 3107–3109 (2006).
    [CrossRef] [PubMed]
  12. T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
    [CrossRef]
  13. T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.
  14. P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
    [CrossRef]
  15. T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun.215, 135–151 (2003).
    [CrossRef]
  16. P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A41, 6470–6479 (1990).
    [CrossRef] [PubMed]
  17. B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
    [CrossRef]
  18. A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization. A universal concept in nonlinear sciences” (Cambridge University Press2001).
  19. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
    [CrossRef] [PubMed]
  20. J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
    [CrossRef]

2012 (1)

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

2011 (1)

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

2010 (6)

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

2007 (2)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

2006 (2)

2003 (1)

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun.215, 135–151 (2003).
[CrossRef]

1998 (1)

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

1997 (1)

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

1990 (1)

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A41, 6470–6479 (1990).
[CrossRef] [PubMed]

Arsenijevic, D.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

Barry, L.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Bimberg, D.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

Braza, P. A.

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A41, 6470–6479 (1990).
[CrossRef] [PubMed]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
[CrossRef]

Choi, M.-T.

Corbett, B.

Cundiff, S.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Berlin, 2004).

K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.

Cundiff, S. T.

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

Delfyett, P. J.

Erneux, T.

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A41, 6470–6479 (1990).
[CrossRef] [PubMed]

Feng, M.

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.

Fiol, G.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

Gavrielides, A.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

Gee, S.

Goulding, D.

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

Habruseva, T.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.

Hegarty, S. P.

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

M. Todaro, J. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, and J. G. McInerney, “Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3 μm passively mode-locked quantum-dot lasers,” Opt. Lett.31, 3107–3109 (2006).
[CrossRef] [PubMed]

T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.

Hohl, A.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

Huyet, G.

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

M. Todaro, J. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, and J. G. McInerney, “Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3 μm passively mode-locked quantum-dot lasers,” Opt. Lett.31, 3107–3109 (2006).
[CrossRef] [PubMed]

T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.

Izadpanah, H.

Kalmus, R.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

Kelleher, B.

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

Kelleher, C.

Kovanis, V.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

Kuntz, M.

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

Kurths, J.

A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization. A universal concept in nonlinear sciences” (Cambridge University Press2001).

Lee, W.

Lester, L. F.

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

Mandel, P.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

McInerney, J. G.

Mirin, R.

K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.

Mirin, R. P.

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

Moloney, J. V.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

O’Donoghue, S.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

Ozharar, S.

Pascual, B. B.

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

Pikovsky, A.

A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization. A universal concept in nonlinear sciences” (Cambridge University Press2001).

Quinlan, F.

Rachinskii, D.

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
[CrossRef]

Rebrova, N.

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.

Reid, D. A.

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

Rosenblum, M.

A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization. A universal concept in nonlinear sciences” (Cambridge University Press2001).

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
[CrossRef]

Silverman, K.

K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.

Silverman, K. L.

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

Simpson, T. B.

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun.215, 135–151 (2003).
[CrossRef]

Todaro, M.

Tourrenc, J.

Varangis, P. M.

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

Viktorov, E. A.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum dot lasers,” Opt. Lett.35, 937–939 (2010).
[CrossRef] [PubMed]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

Vladimirov, A. G.

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

White, J. K.

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

Wolfrum, M.

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

Ye, J.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Berlin, 2004).

Yilmaz, T.

Appl. Phys. Lett. (3)

E. A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the mode-locked regime in quantum dot lasers,” Appl. Phys. Lett.91, 231116 (2007).
[CrossRef]

N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97, 101105 (2010).
[CrossRef]

G. Fiol, D. Arsenijevic, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett.96, 011104 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Feng, S. T. Cundiff, R. P. Mirin, and K. L. Silverman, “Wavelength bistability and switching in two-section quantum-dot diode lasers,” IEEE J. Quantum Electron.46, 951–958 (2010).
[CrossRef]

IEEE J. Quantum. Elecron. (1)

J. K. White, J. V. Moloney, A. Gavrielides, V. Kovanis, A. Hohl, and R. Kalmus, “Multilongitudinal-mode dynamics in a semiconductor laser subject to optical injection,” IEEE J. Quantum. Elecron.34, 1469–1473 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1, 395–401 (2007).
[CrossRef]

Opt. Commun. (1)

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun.215, 135–151 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

P. A. Braza and T. Erneux, “Constant phase, phase drift, and phase entrainment in lasers with an injected signal,” Phys. Rev. A41, 6470–6479 (1990).
[CrossRef] [PubMed]

Phys. Rev. E (2)

B. Kelleher, D. Goulding, B. B. Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E85, 046212 (2012).
[CrossRef]

N. Rebrova, G. Huyet, D. Rachinskii, and A. G. Vladimirov, “Optically injected mode-locked laser,” Phys. Rev. E83, 066202 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester, “Frequency entrainment in optically injected semiconductor lasers,” Phys. Rev. Lett.78, 2353–2356 (1997).
[CrossRef]

SPIE Proceedings (1)

T. Habruseva, S. O’Donoghue, N. Rebrova, S. P. Hegarty, and G. Huyet, “Quantum-dot mode-locked lasers with optical injection,” SPIE Proceedings7608, 760803 (2010).
[CrossRef]

Other (4)

T. Habruseva, N. Rebrova, S. P. Hegarty, and G. Huyet, “Mode-locked semiconductor lasers with optical injection,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology, 13Springer-Verlag, NY, 2012) pp. 65–91.

K. Silverman, M. Feng, R. Mirin, and S. Cundiff, “Exotic behavior in quantum dot mode-locked lasers: dark pulses and bistability,” in Quantum Dot Devices, Lecture Notes in Nanoscale Science and Technology13 (Springer-Verlag, NY, 2012) pp. 23–48.

A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization. A universal concept in nonlinear sciences” (Cambridge University Press2001).

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Berlin, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup for characterization of the QD-MLL under external optical injection. TLS: tunable laser source; PC: polarization controller; AC: autocorrelator; OSA: optical spectrum analyzer; ESA: electronic spectrum analyzer; FRMZG: frequency-resolved Mach-Zehnder gating.

Fig. 2
Fig. 2

Recovered pulse shape (black solid line) and phase (red circles) of the slave QD-MLL. The blue dashed line is the least squares parabolic fit of the phase. Absorber bias: −2.0 V, gain current: 172 mA.

Fig. 3
Fig. 3

Optical (a) and RF (b) spectra of the free running QD-MLL. Optical (c) and RF (d) spectra of the slave QD-MLL when it phase-locked to the injection seed. The injection seed indicated with an arrow is close to one of the slave modes. Optical (e) and RF (f) spectra of the injected QD-MLL when it operated in a single-mode regime. Optical (g) and RF (h) spectra of the slave QD-MLL in the bounded phase regime.

Fig. 4
Fig. 4

Measured heterodyne beating signals of the slave mode with (red) and without (black) injection-locking. The slave mode was mixed with the TLS; the frequency of the TLS was adjusted so that the beating signal was in the area of 12 – 15 GHz, in the region of the flat frequency response from detector and amplifier. Gain current: 172 mA; absorbr bias: −2.0 V; injection power: 35μW.

Fig. 5
Fig. 5

Schematic representation of experimental data presented in Fig. 6. (a) corresponds to a decrease and (b) corresponds to an increase of Δ. Both maps are overlain in (c). The numbers and capital letters indicate the following regions: U: unlocked, L: Locked, SM: single-mode, MSM: modulated single-mode, 1: Unlocked, 2: Locked, 3: Single-mode, 4: Single-mode with modulation, 5: Unlocked or Locked bistable regime, 6: Unlocked or Single-mode bistable regime, 7: Single-mode 1 with modulation or Single-mode 2 bistable regime, 8: Single-mode 1 or Single-mode 2 bistable regime. The bistable regions are indicated with cross-hatching.

Fig. 6
Fig. 6

Measured bifurcation diagram in two-parameter plane: master-slave detuning (ordinate) and master power (abscissa). Absorber bias: −2.0 V; gain current: 165 – 190 mA. (a) The numbers indicate the following regions: 1: Unlocked, 2: Locked, 3: Single-mode, 4: Single-mode with modulation, 5: Unlocked or Locked bistable regime, 6: Unlocked or Single-mode bistable regime, 7: Single-mode 1 with modulation or Single-mode 2 bistable regime, 8: Single-mode 1 or Single-mode 2 bistable regime. The capital blue letters with stars indicate the boundaries. (b) The dashed vertical lines and small letters indicate the points of transitions between different regimes for three different injection powers: 54 μW (black), 745 μW (blue) and 6.2 mW (red).

Fig. 7
Fig. 7

(a) Slave power vs detuning for Δ decrease (blue) and increase (red). Low frequency spectrum vs detuning for decrease (b) and for increase (c) of Δ. Absorber bias: −2.0 V; gain current: 165 – 185 mA.

Fig. 8
Fig. 8

(a) Slave power vs detuning for Δ decrease (blue) and increase (red). Low frequency spectrum vs detuning for decrease (b) and for increase (d) of Δ. Fundamental harmonic RF spectrum vs detuning for Δ decrease, (c). Absorber bias: −2.0 V; gain current: 165 – 185 mA.

Fig. 9
Fig. 9

(a) Slave power vs detuning for Δ decrease (blue) and increase (red). Fundamental harmonic RF spectrum vs detuning for decrease (b) and increase (c) of Δ. Low frequency spectrum vs detuning for Δ increase (d). Absorber bias: −2.0 V; gain current: 165 – 185 mA.

Fig. 10
Fig. 10

Slave power vs master-slave detuning for Δ decrease (blue) and increase (red) at injection powers of 14 mW (a), 22.4 mW (b), 33 mW (c), and 120 mW (d). Absorber bias: −2.0 V; gain current: 165 – 190 mA.

Metrics