Abstract

We report on the highly efficient, resonantly diode-pumped Er:YAG-core, double-clad, all-crystalline eye-safe waveguide laser. A 500 × 500 μm Er3+(1%):YAG single-crystalline core with an ultra low numerical aperture (NA) of ~0.02 was surrounded by a 700 × 700 μm undoped single-crystalline YAG cladding. The entire Er:YAG/YAG core/clad structure was over-clad by transparent magnesium aluminum spinel (MgAl2O4) ceramic. The waveguide was continuously (CW) clad-pumped by a spectrally-narrowed, fiber-coupled InGaAsP/InP laser diode module at ~1532 nm. We achieved 25.4 W of output power at 1645 nm with a beam quality of M2 ~2.6. The achieved 56.6% slope efficiency with respect to the absorbed pump was derived by factoring out scattering loss of the pump light in the inner cladding. With a wavelength-selective cavity, the waveguide laser delivered ~8 W of output power at 1616.6 nm. To the best of our knowledge, it is the first reported laser experiment with a crystalline Er3+:YAG-core and a truly double-clad crystalline waveguide structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
    [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008).
    [CrossRef] [PubMed]
  3. R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).
  4. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
    [CrossRef]
  5. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
    [CrossRef]
  6. C.-Y. Lo, K.-Y. Huang, J.-C. Chen, S.-Y. Tu, and S.-L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004).
    [CrossRef] [PubMed]
  7. C.-C. Lai, C.-P. Ke, S.-K. Liu, D.-Y. Jheng, D.-J. Wang, M.-Y. Chen, Y.-S. Li, P. S. Yeh, and S.-L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011).
    [CrossRef] [PubMed]
  8. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passive Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett.26(12), 881–883 (2001).
    [CrossRef] [PubMed]
  9. U. Griebner and H. Schönnagel, “Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide,” Opt. Lett.24(11), 750–752 (1999).
    [CrossRef] [PubMed]
  10. J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett.27(24), 2161–2163 (2002).
    [CrossRef] [PubMed]
  11. X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
    [CrossRef]
  12. http://refractiveindex.info/?group=CRYSTAL&material=Y3Al5O12 .
  13. Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron.40(3), 270–280 (2004).
    [CrossRef]
  14. J. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B97(2), 297–306 (2009).
    [CrossRef]
  15. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
    [CrossRef] [PubMed]
  16. K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
    [CrossRef]
  17. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
    [CrossRef]

2012 (2)

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

2011 (1)

2009 (2)

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

J. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B97(2), 297–306 (2009).
[CrossRef]

2008 (1)

2006 (1)

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

2005 (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

2004 (2)

2002 (1)

2001 (1)

1999 (1)

1998 (1)

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

1985 (1)

R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).

1961 (1)

E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

Ahmed, M. A.

Aubry, N.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Balembois, F.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Barty, C. P. J.

Beach, R. J.

Bennett, W. J.

Bibeau, C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Brenier, A.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Chen, J.-C.

Chen, M.-Y.

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Dawson, J. W.

Délen, X.

Didierjean, J.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Dubinskii, M.

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

Ebbers, C. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Emanuel, M. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).

Fourmigué, J.-M.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Georges, P.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Graf, T.

Griebner, U.

Heebner, J. E.

Huang, K.-Y.

Huang, S.-L.

Jancaitis, K. S.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Jheng, D.-Y.

Ke, C.-P.

Klotz, M. J.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Krupke, W. F.

Kway, W. L.

R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).

Lai, C.-C.

Lebbou, K.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Lee, H.-C.

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

Leyva, V.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

Li, Y.-S.

Liu, S.-K.

Lo, C.-Y.

Mackenzie, J.

J. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B97(2), 297–306 (2009).
[CrossRef]

Mackenzie, J. I.

Martial, I.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

McMahon, J. M.

Meissner, H.

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

Meissner, H. E.

Meissner, O. R.

Messerly, M. J.

Mitchell, S. C.

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passive Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett.26(12), 881–883 (2001).
[CrossRef] [PubMed]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Mu, X.

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

Pax, P. H.

Perrodin, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Piehler, S.

Reeder, R. A.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

Route, R. K.

R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).

Sangla, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron.40(3), 270–280 (2004).
[CrossRef]

Schönnagel, H.

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Shepherd, D. P.

Shverdin, M. Y.

Siders, C. W.

Skidmore, J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Snitzer, E.

E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

Spariosu, K.

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

Sridharan, A. K.

Stappaerts, E. A.

Sutton, S. B.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron.40(3), 270–280 (2004).
[CrossRef]

Tillement, O.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Tu, S.-Y.

Voss, A.

Wang, D.-J.

Yeh, P. S.

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Appl. Phys. B (2)

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

J. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B97(2), 297–306 (2009).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron.40(3), 270–280 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005).
[CrossRef]

Opt. Eng. (1)

R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961).
[CrossRef]

Proc. SPIE (1)

X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012).
[CrossRef]

Other (1)

http://refractiveindex.info/?group=CRYSTAL&material=Y3Al5O12 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The end-face photograph of the double-clad, Er3+:YAG-core, channel waveguide, as described in the paper body; core – single-crystalline Er3+(1%):YAG, inner cladding – single-crystalline undoped YAG, outer cladding - transparent ceramic magnesium aluminum spinel (MgAl2O4); (b) - The rendering of the waveguide with overall dimensions.

Fig. 2
Fig. 2

A simplified optical layout of the cladding-pumped Er:YAG/YAG channel waveguide laser. The pumping source, a fiber coupled InGaAsP/InP laser diode module (FCLDM) at 1532 nm, is described in the paper body. M1 and M2 are the cavity mirrors. L1 and L2 are the lenses of pump coupling optics.

Fig. 3
Fig. 3

The absorption cross-section of the 4I15/24I13/2 transitions of Er3+ in YAG at 300 K (blue, solid line). Spectrum of the laser diode module (purple, dashed line).

Fig. 4
Fig. 4

The output power of the Er(1%):YAG/YAG channel waveguide laser at 1645 nm versus the incident pump power. Laser cavity: Lcav = 35 mm, flat HR mirror, output coupler with the reflectivity of ROC = 85%, RoC = 50 mm.

Fig. 5
Fig. 5

Laser output power at 1645 nm of the resonantly diode clad-pumped at 1532 nm Er(1%):YAG-core, channel waveguide laser versus the absorbed pump power. Maximum slope efficiency of ~56.6% was achieved with the output coupler reflectivity of 85%.

Fig. 6
Fig. 6

Far field intensity distribution of the double-clad, channel waveguide Er:YAG laser. Left: 35 mm-long plano-concave laser cavity, RoC = 50 mm, ROC = 85%, PPUMP = 98 W, POUT = 25.4 W, divergence ~13.4 mrad. Right: slightly misaligned, 110 mm-long, plano-concave laser cavity, RoC = 100 mm, ROC = 70%; PPUMP = 70 W, POUT = 8 W, divergence ~6 mrad.

Fig. 7
Fig. 7

The output power of the Er:YAG channel waveguide laser operated at 1617 nm versus the incident pump power. Wavelength selective laser resonator: LCAV = 35 mm, ROC = 62% at 1617 nm, ROC = 21% at 1645 nm.

Metrics