Abstract

This study demonstrates all optical switches between the four diffractive light levels of a body-centered tetragonal photonic crystal. The sample is based on holographic polymer-dispersed liquid crystals that are fabricated using a two-beam interference with multiple exposures. The switching mechanism bases on the effective index modulation of the PC that contains a liquid crystal/azo-dye mixture could be controlled by two pumping laser beams. The switching time between the blue-laser-pumped and the blue-and-green-laser-pumped levels is fast. The study also discusses the switching time of the various levels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lin, C. W. Chu, M. S. Li, and A. Y.-G. Fuh, “Biphotonic-induced reorientation inversion in azo-dye-doped liquid crystal films,” Opt. Express19(14), 13118–13125 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-14-13118 .
    [CrossRef] [PubMed]
  2. P. Klysubun and G. Indebetouw, “Transient and steady state photorefractive responses in dye-doped nematic liquid crystal cells,” J. Appl. Phys.91(3), 897–903 (2002), http://jap.aip.org/resource/1/japiau/v91/i3/p897_s1 .
    [CrossRef]
  3. A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
    [CrossRef]
  4. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett.34(15), 2351–2353 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-15-2351 .
    [CrossRef] [PubMed]
  5. V. K. S. Hsiao and W.-T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B100(3), 539–546 (2010), http://www.springerlink.com/content/p667258l0573t158/ .
    [CrossRef]
  6. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
    [CrossRef] [PubMed]
  7. A. Y.-G. Fuh and K. T. Cheng, “Partially erasable photoalignment layer formed in dye-doped liquid crystal films,” Jpn. J. Appl. Phys.45(11), 8778–8781 (2006), http://jjap.jsap.jp/link?JJAP/45/8778/ .
    [CrossRef]
  8. O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.22(2), 286–300 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/C1JM13485J .
    [CrossRef]
  9. M. Shian Li, A. Y.-G. Fuh, and S. T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett.36(19), 3864–3866 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-36-19-3864 .
    [CrossRef] [PubMed]
  10. S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
    [CrossRef]
  11. D. Statman and I. Jánossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118(7), 3222–3232 (2003), http://jcp.aip.org/resource/1/jcpsa6/v118/i7/p3222_s1 .
    [CrossRef]
  12. C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
    [CrossRef] [PubMed]
  13. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
    [CrossRef]
  14. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express18(8), 8697–8704 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-8-8697 .
    [CrossRef] [PubMed]
  15. J. H. Liu, Y. L. Chou, R. Balamurugan, K. H. Tien, W. T. Chuang, and M. Z. Wu, “Optical properties of chiral nematic side-chain copolymers bearing cholesteryl and azobenzene building blocks,” J Polym. Sci., Part A: Polym. Chem., 49, 770–780 (2011), http://onlinelibrary.wiley.com/doi/10.1002/pola.24490/abstract .
  16. T. Ochiai and J. Sánchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B64(24), 245113 (2001), http://prb.aps.org/abstract/PRB/v64/i24/e245113 .
    [CrossRef]
  17. R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt.14(2), 024003 (2012), http://iopscience.iop.org/2040-8986/14/2/024003 .
    [CrossRef]
  18. A. Y.-G. Fuh, M. S. Li, and S. T. Wu, “Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal,” Opt. Express19(14), 13428–13435 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-14-13428 .
    [CrossRef] [PubMed]
  19. C. H. Legge and G. R. Mitchell, “Photo-induced phase transitions in azobenzene-doped liquid crystals,” J. Phys. D Appl. Phys.25(3), 492–499 (1992), http://iopscience.iop.org/0022-3727/25/3/024 .
    [CrossRef]
  20. Y. Norikane, Y. Hirai, and M. Yoshida, “Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes,” Chem. Commun. (Camb.)47(6), 1770–1772 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC04052E .
    [CrossRef] [PubMed]

2012 (1)

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt.14(2), 024003 (2012), http://iopscience.iop.org/2040-8986/14/2/024003 .
[CrossRef]

2011 (5)

2010 (4)

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

V. K. S. Hsiao and W.-T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B100(3), 539–546 (2010), http://www.springerlink.com/content/p667258l0573t158/ .
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express18(8), 8697–8704 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-8-8697 .
[CrossRef] [PubMed]

2009 (1)

2007 (1)

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
[CrossRef] [PubMed]

2006 (1)

A. Y.-G. Fuh and K. T. Cheng, “Partially erasable photoalignment layer formed in dye-doped liquid crystal films,” Jpn. J. Appl. Phys.45(11), 8778–8781 (2006), http://jjap.jsap.jp/link?JJAP/45/8778/ .
[CrossRef]

2004 (1)

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

2003 (1)

D. Statman and I. Jánossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118(7), 3222–3232 (2003), http://jcp.aip.org/resource/1/jcpsa6/v118/i7/p3222_s1 .
[CrossRef]

2002 (1)

P. Klysubun and G. Indebetouw, “Transient and steady state photorefractive responses in dye-doped nematic liquid crystal cells,” J. Appl. Phys.91(3), 897–903 (2002), http://jap.aip.org/resource/1/japiau/v91/i3/p897_s1 .
[CrossRef]

2001 (1)

T. Ochiai and J. Sánchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B64(24), 245113 (2001), http://prb.aps.org/abstract/PRB/v64/i24/e245113 .
[CrossRef]

1999 (1)

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

1992 (1)

C. H. Legge and G. R. Mitchell, “Photo-induced phase transitions in azobenzene-doped liquid crystals,” J. Phys. D Appl. Phys.25(3), 492–499 (1992), http://iopscience.iop.org/0022-3727/25/3/024 .
[CrossRef]

Bunning, T. J.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Chang, W.-T.

V. K. S. Hsiao and W.-T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B100(3), 539–546 (2010), http://www.springerlink.com/content/p667258l0573t158/ .
[CrossRef]

Chen, Y. S.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Cheng, K. T.

A. Y.-G. Fuh and K. T. Cheng, “Partially erasable photoalignment layer formed in dye-doped liquid crystal films,” Jpn. J. Appl. Phys.45(11), 8778–8781 (2006), http://jjap.jsap.jp/link?JJAP/45/8778/ .
[CrossRef]

Chu, C. W.

De Sio, L.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Ferjani, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Frontiera, R. R.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
[CrossRef] [PubMed]

Fuh, A. Y.-G.

Hirai, Y.

Y. Norikane, Y. Hirai, and M. Yoshida, “Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes,” Chem. Commun. (Camb.)47(6), 1770–1772 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC04052E .
[CrossRef] [PubMed]

Hoke, L.

Hrozhyk, U. A.

Hsiao, V. K. S.

V. K. S. Hsiao and W.-T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B100(3), 539–546 (2010), http://www.springerlink.com/content/p667258l0573t158/ .
[CrossRef]

Huang, H.

Huang, S. Y.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Huang, T. J.

Ikeda, T.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Indebetouw, G.

P. Klysubun and G. Indebetouw, “Transient and steady state photorefractive responses in dye-doped nematic liquid crystal cells,” J. Appl. Phys.91(3), 897–903 (2002), http://jap.aip.org/resource/1/japiau/v91/i3/p897_s1 .
[CrossRef]

Jánossy, I.

D. Statman and I. Jánossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118(7), 3222–3232 (2003), http://jcp.aip.org/resource/1/jcpsa6/v118/i7/p3222_s1 .
[CrossRef]

Jau, H. C.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Kanazawa, A.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Kimball, B. R.

Klosterman, J.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Klysubun, P.

P. Klysubun and G. Indebetouw, “Transient and steady state photorefractive responses in dye-doped nematic liquid crystal cells,” J. Appl. Phys.91(3), 897–903 (2002), http://jap.aip.org/resource/1/japiau/v91/i3/p897_s1 .
[CrossRef]

Legge, C. H.

C. H. Legge and G. R. Mitchell, “Photo-induced phase transitions in azobenzene-doped liquid crystals,” J. Phys. D Appl. Phys.25(3), 492–499 (1992), http://iopscience.iop.org/0022-3727/25/3/024 .
[CrossRef]

Li, M. S.

Lin, H. C.

Liu, J. H.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Liu, Y. J.

Mathies, R. A.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
[CrossRef] [PubMed]

Mitchell, G. R.

C. H. Legge and G. R. Mitchell, “Photo-induced phase transitions in azobenzene-doped liquid crystals,” J. Phys. D Appl. Phys.25(3), 492–499 (1992), http://iopscience.iop.org/0022-3727/25/3/024 .
[CrossRef]

Natarajan, L. V.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Norikane, Y.

Y. Norikane, Y. Hirai, and M. Yoshida, “Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes,” Chem. Commun. (Camb.)47(6), 1770–1772 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC04052E .
[CrossRef] [PubMed]

Ochiai, T.

T. Ochiai and J. Sánchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B64(24), 245113 (2001), http://prb.aps.org/abstract/PRB/v64/i24/e245113 .
[CrossRef]

Park, L.-S.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Reznikov, Y.

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.22(2), 286–300 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/C1JM13485J .
[CrossRef]

Sánchez-Dehesa, J.

T. Ochiai and J. Sánchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B64(24), 245113 (2001), http://prb.aps.org/abstract/PRB/v64/i24/e245113 .
[CrossRef]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Serak, S. V.

Shi, J.

Shian Li, M.

Shiono, T.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Statman, D.

D. Statman and I. Jánossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118(7), 3222–3232 (2003), http://jcp.aip.org/resource/1/jcpsa6/v118/i7/p3222_s1 .
[CrossRef]

Steeves, D. M.

Stuart, C. M.

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
[CrossRef] [PubMed]

Sutherland, R. L.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Tabiryan, N.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Tabiryan, N. V.

Tondiglia, V. P.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Tsutsumi, O.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Umeton, C.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Üpping, J.

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt.14(2), 024003 (2012), http://iopscience.iop.org/2040-8986/14/2/024003 .
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Veltri, A.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

Walker, T. R.

Wehrspohn, R. B.

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt.14(2), 024003 (2012), http://iopscience.iop.org/2040-8986/14/2/024003 .
[CrossRef]

Wu, S. T.

Yang, P. C.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Yaroshchuk, O.

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.22(2), 286–300 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/C1JM13485J .
[CrossRef]

Yoshida, M.

Y. Norikane, Y. Hirai, and M. Yoshida, “Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes,” Chem. Commun. (Camb.)47(6), 1770–1772 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC04052E .
[CrossRef] [PubMed]

Zheng, Y. B.

Adv. Mater. (Deerfield Beach Fla.) (2)

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite Holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2316–2319 (2010), http://onlinelibrary.wiley.com/doi/10.1002/adma.200903838/abstract .
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, O. Tsutsumi, T. Ikeda, and T. J. Bunning, “Optically switchable Bragg Reflectors,” Adv. Mater. (Deerfield Beach Fla.)16(16), 1453–1456 (2004), http://onlinelibrary.wiley.com/doi/10.1002/adma.200400206/abstract .
[CrossRef]

Appl. Phys. B (1)

V. K. S. Hsiao and W.-T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B100(3), 539–546 (2010), http://www.springerlink.com/content/p667258l0573t158/ .
[CrossRef]

Chem. Commun. (Camb.) (1)

Y. Norikane, Y. Hirai, and M. Yoshida, “Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes,” Chem. Commun. (Camb.)47(6), 1770–1772 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC04052E .
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. Klysubun and G. Indebetouw, “Transient and steady state photorefractive responses in dye-doped nematic liquid crystal cells,” J. Appl. Phys.91(3), 897–903 (2002), http://jap.aip.org/resource/1/japiau/v91/i3/p897_s1 .
[CrossRef]

J. Chem. Phys. (1)

D. Statman and I. Jánossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118(7), 3222–3232 (2003), http://jcp.aip.org/resource/1/jcpsa6/v118/i7/p3222_s1 .
[CrossRef]

J. Mater. Chem. (1)

O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.22(2), 286–300 (2011), http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/C1JM13485J .
[CrossRef]

J. Opt. (1)

R. B. Wehrspohn and J. Üpping, “3D photonic crystals for photon management in solar cells,” J. Opt.14(2), 024003 (2012), http://iopscience.iop.org/2040-8986/14/2/024003 .
[CrossRef]

J. Phys. Chem. A (1)

C. M. Stuart, R. R. Frontiera, and R. A. Mathies, “Excited-state structure and dynamics of cis- and trans-azobenzene from resonance raman intensity analysis,” J. Phys. Chem. A111(48), 12072–12080 (2007), http://pubs.acs.org/doi/abs/10.1021/jp0751460 .
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

C. H. Legge and G. R. Mitchell, “Photo-induced phase transitions in azobenzene-doped liquid crystals,” J. Phys. D Appl. Phys.25(3), 492–499 (1992), http://iopscience.iop.org/0022-3727/25/3/024 .
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Y.-G. Fuh and K. T. Cheng, “Partially erasable photoalignment layer formed in dye-doped liquid crystal films,” Jpn. J. Appl. Phys.45(11), 8778–8781 (2006), http://jjap.jsap.jp/link?JJAP/45/8778/ .
[CrossRef]

Opt. Commun. (1)

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun.283(9), 1726–1731 (2010), http://www.sciencedirect.com/science/article/pii/S0030401809013558 .
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys.1(18), 4219–4224 (1999), http://pubs.rsc.org/en/Content/ArticleLanding/1999/CP/a905172d .
[CrossRef]

Phys. Rev. B (1)

T. Ochiai and J. Sánchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B64(24), 245113 (2001), http://prb.aps.org/abstract/PRB/v64/i24/e245113 .
[CrossRef]

Other (1)

J. H. Liu, Y. L. Chou, R. Balamurugan, K. H. Tien, W. T. Chuang, and M. Z. Wu, “Optical properties of chiral nematic side-chain copolymers bearing cholesteryl and azobenzene building blocks,” J Polym. Sci., Part A: Polym. Chem., 49, 770–780 (2011), http://onlinelibrary.wiley.com/doi/10.1002/pola.24490/abstract .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated intensity profile of interference region, (b) top-view SEM image of HPDLC profile, and (c) far field view of the diffraction image of the BCT sample.

Fig. 2
Fig. 2

Simulated concentration of cis isomers versus the pumping intensity of a green laser beam with the pumping intensity of the blue laser beam being fixed at 100 mW/cm2. The inset shows the concentration of cis isomer upon irradiation of single blue or green laser beams, respectively.

Fig. 3
Fig. 3

Experimental setup used to measure the optical switch properties of a HPDLC-based PC. D: detector; S: shutter; A: aperture; CF: color filter; BS: beam splitter.

Fig. 4
Fig. 4

Intensities of the diffraction beam when the samples were pumped by various laser beam combinations. The pumping conditions of non-exposure and exposure to green, blue and green, and blue laser beams are simplified into OFF, ONG, ONB + G, and ONB for convenience.

Fig. 5
Fig. 5

Intensities of the diffraction beam as the samples transition between ONB + G and ONB.

Fig. 6
Fig. 6

Upstep and downstep of the levels. One of the curves represents a level up that corresponds to the increase from level 1 to level 4, whereas the other represents a level down that corresponds to the decrease from level 4 to level 1.

Tables (1)

Tables Icon

Table 1 Switching times between the OFF, ONG, ONB, and ONB + G levels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N cis dt =(1 N cis )[ σ B,tc φ B,tc I B hν + σ G,tc φ G,tc I G h ν ] σ G,ct φ G,ct I G h ν N cis N cis τ ,
( N cis ) eq =1 I G T I G + X T 1+(1+ I B I B T ) I G T I G ,
I G T = [( σ G,tc φ G,tc + σ G,ct φ G,ct ) τ h ν ] 1 , I B T = [ σ B,tc φ B,tc τ hν ] 1 , X T = σ G,ct φ G,ct σ G,tc φ G,tc + σ G,ct φ G,ct .

Metrics