Abstract

This work presents a nanoplasmonic photoconductive antenna (PCA) with metal nanoislands for enhancing terahertz (THz) pulse emission. The whole photoconductive area was fully covered with metal nanoislands by using thermal dewetting of thin metal film at relatively low temperature. The metal nanoislands serve as plasmonic nanoantennas to locally enhance the electric field of an ultrashort pulsed pump beam for higher photocarrier generation. The plasmon resonance of metal nanoislands was achieved at an excitation laser wavelength by changing the initial thickness of metal film. This nanoplasmonic PCA shows two times higher enhancement for THz pulse emission power than a conventional PCA. This work opens up a new opportunity for plasmon enhanced large-aperture THz photoconductive antennas.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  2. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006).
    [CrossRef]
  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  4. N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
    [CrossRef]
  5. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14(20), 1128–1130 (1989).
    [CrossRef] [PubMed]
  6. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
    [CrossRef] [PubMed]
  7. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36(30), 7853–7859 (1997).
    [CrossRef] [PubMed]
  8. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
    [CrossRef]
  9. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
    [CrossRef]
  10. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express16(22), 18443–18450 (2008).
    [CrossRef] [PubMed]
  11. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
    [CrossRef] [PubMed]
  12. C. W. Berry and M. Jarrahi, “Plasmonically-enhanced localization of light into photoconductive antennas,” Proc. Conf. Lasers and Electro-Optics, CFI2 (2010)
  13. H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
    [CrossRef]
  14. A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
    [CrossRef]
  15. Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012).
    [CrossRef] [PubMed]
  16. S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
    [CrossRef]
  17. K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993).
    [CrossRef]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
    [CrossRef]
  19. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  20. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
    [CrossRef] [PubMed]

2012 (3)

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

2010 (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

2008 (2)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

2006 (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006).
[CrossRef]

2005 (2)

N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

2003 (2)

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003).
[CrossRef] [PubMed]

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

2000 (1)

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

1997 (1)

1993 (1)

K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993).
[CrossRef]

1989 (1)

Ahn, J.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Beere, H. E.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

Benoit, J.-M.

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Bosbach, J.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Catchpole, K. R.

Chen, Z.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Chua, S. J.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Chum, C.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Danner, A.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Davies, A. G.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Exter, M.

Fattinger, C.

Freese, W.

Fukasawa, R.

N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
[CrossRef]

Geissler, A.

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

Goldmann, A.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Grischkowsky, D.

He, M.

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

Inoue, H.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Jeong, K.-H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012).
[CrossRef] [PubMed]

Jin, K. H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Kawase, K.

Kohl, P. A.

K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993).
[CrossRef]

Kumazawa, R.

N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
[CrossRef]

Lei, Y.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Linfield, E. H.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Maier, S.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Matsuura, S.

Matthäus, G.

Müller, R.

Nagai, N.

N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
[CrossRef]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Nakashima, S.

Nolte, S.

Notni, G.

Ogawa, Y.

Oh, Y.-J.

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012).
[CrossRef] [PubMed]

Ostendorp, S.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Park, S.-G.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Petit, P.

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006).
[CrossRef]

Polman, A.

Pradarutti, B.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Riehemann, S.

Sakai, K.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

Si, G.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Stietz, F.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Sun, M.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Tani, M.

Tanoto, H.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Teng, J.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Trager, F.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

Vartanyan, T.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Vogt, K. W.

K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993).
[CrossRef]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006).
[CrossRef]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wang, B.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Watanabe, Y.

Wenzel, T.

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Wilde, G.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wu, Q.

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

Xu, F.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Yang, S.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Ye, J. C.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Yi, M.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Zhao, H.

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

ACS Nano (1)

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005).
[CrossRef]

J. Appl. Phys. (1)

K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993).
[CrossRef]

J. Phys. Chem. C (1)

A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006).
[CrossRef]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Nat. Photonics (2)

H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000).
[CrossRef] [PubMed]

Other (1)

C. W. Berry and M. Jarrahi, “Plasmonically-enhanced localization of light into photoconductive antennas,” Proc. Conf. Lasers and Electro-Optics, CFI2 (2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of nanoplasmonic photoconductive antenna (NP-PCA) with metal nanoislands. Plasmonic nanoislands are fabricated over the full photoconductive area to locally enhance the ultrashort pulsed pump beam. This local field enhancement increases photocarrier generation and THz pulse emission from the PCA.

Fig. 2
Fig. 2

(a) Hierarchical fabrication procedure for NP-PCA with Ag nanoislands. (b) A dark-field image of NP-PCA. The Ag nanoislands are highly scattered in red over the full photoconductive area due to LSPR at an excitation wavelength. (c) A SEM image of NP-PCA (photoconductive gap: 15 um in width). (d) NP-PCA packaged on a 1-inch printed circuit broad.

Fig. 3
Fig. 3

SEM images of the Ag nanoislands transformed from different initial thicknesses of Ag films. The Ag films with an initial thickness below 20 nm were fully dewetted into nanoislands without an electric short circuit between PCA electrodes and the nanoislands size increases with the initial thickness.

Fig. 4
Fig. 4

Experimental setup for dark-field spectroscopy and plasmonic properties of Ag nanoislands. (a) The experimental setup. (b) Normalized scattering spectra of Ag nanoislands depending on the initial thickness of Ag film. (c) Plasmonic scattering intensity of Ag nanoislands at an excitation wavelength of 800 nm depending on initial thickness and the annealing temperature.

Fig. 5
Fig. 5

(a) Time-domain waveforms of THz pulses emitted from NP-PCA with nanoislands and a conventional PCA (C-PCA) without Ag nanoislands over a photoconductive area. (b) THz power spectra from NP-PCA and C-PCA. The average emission power is enhanced by 2 times over 0.1-1.1 THz bandwidth.

Metrics