Abstract

In this paper the transmission properties of a metal plate perforated with a triangular array of air holes is investigated. We find that the normalized transmittivity exceeds unity within a certain frequency range under normal incidence of a Gaussian beam. Calculations and experiments indicate that the phenomenon results from the collimation effect which only occurs inside the complete bandgap of surface resonance states on the perforated metal plate. The findings present a simple approach for beam collimation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  4. G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
    [CrossRef] [PubMed]
  5. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008).
    [CrossRef] [PubMed]
  6. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
    [CrossRef]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  8. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  10. A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995).
    [CrossRef] [PubMed]
  11. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
    [CrossRef]
  12. M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express15(7), 4238–4246 (2007).
    [CrossRef] [PubMed]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  15. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
    [CrossRef] [PubMed]
  16. W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
    [CrossRef]
  17. D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett.29(8), 896–898 (2004).
    [CrossRef] [PubMed]
  18. A. K. Azad and W. L. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett.30(21), 2945–2947 (2005).
    [CrossRef] [PubMed]
  19. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29(21), 2500–2502 (2004).
    [CrossRef] [PubMed]
  20. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  21. P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
    [CrossRef]
  22. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  23. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
    [CrossRef]
  24. M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
    [CrossRef] [PubMed]
  25. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
    [CrossRef]
  26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
    [CrossRef] [PubMed]
  27. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
    [CrossRef]
  28. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
    [CrossRef]
  29. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
    [CrossRef]
  30. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
    [CrossRef] [PubMed]
  31. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
    [CrossRef]
  32. J. D. Jackson, Classical electrodynamics (Wiley, New York, 1998).
  33. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (MA: Artech House, Norwood, 2000).

2011

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

2010

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

2008

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008).
[CrossRef] [PubMed]

2007

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express15(7), 4238–4246 (2007).
[CrossRef] [PubMed]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

2006

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

2005

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

A. K. Azad and W. L. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett.30(21), 2945–2947 (2005).
[CrossRef] [PubMed]

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

2000

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

1997

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

1995

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995).
[CrossRef] [PubMed]

1982

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Adam, P. M.

Alloschery, O.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

Andrew, P.

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
[CrossRef]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Atwater, H. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Azad, A. K.

Bachelot, R.

Barbieri, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Baudrion, A. L.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

Beruete, M.

Biteen, J. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Bravo-Abad, J.

Brecht, A.

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995).
[CrossRef] [PubMed]

Campillo, I.

Cao, Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Chan, C. T.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

Chassagneux, Y.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Colombelli, R.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Davies, A. G.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

de Lesegno, B. V.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

Dereux, A.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Derouard, M.

Devaux, E.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

Dolado, J. S.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Fan, Y. C.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Fu, J. X.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29(21), 2500–2502 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Gauglitz, G.

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995).
[CrossRef] [PubMed]

Gay, G.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Gonzalez, M. U.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

González, M. U.

Grischkowsky, D.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Hazart, J.

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Hohenau, A.

Hou, B.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Kitson, S. C.

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Krenn, J. R.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Lérondel, G.

Lewis, N. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Lezec, H. J.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, H. Q.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Maineult, W.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29(21), 2500–2502 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Mertens, H.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Moller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Polman, A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Qu, D. X.

Quidant, R.

Royer, P.

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Sheng, P.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Sorolla, M.

Stepanov, A. L.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Sweatlock, L. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Weeber, J. C.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

Wei, Z. Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Weiner, J.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

Wen, W. J.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, C.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Yu, X.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Zhang, W. L.

Zhou, L.

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Biosens. Bioelectron.

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995).
[CrossRef] [PubMed]

J. Mod. Opt.

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

J. Phys. Chem. C

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostructures

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Phys. Rev. B

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Other

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).

J. D. Jackson, Classical electrodynamics (Wiley, New York, 1998).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (MA: Artech House, Norwood, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Computed (red solid line for MEM calculation, blue dash line for FDTD simulation) transmission spectra under plane wave normal incidence with the electric field E along x axis ( E e ^ x ) and measured (black circular dots) transmission spectrum for the x-polarized Gaussian beam normally incident on the sample plate. Two insets present the sketch map of the front surface of the sample (right side) and the irreducible Brillouin zone of the lattice (left side).

Fig. 2
Fig. 2

Measured radiation patterns in (a) E-plane ( φ= 0 o ) and (b) H-plane ( φ= 90 o ) of transmitted beams with (solid lines) and without (dash lines) the sample plate normally incident by a horn antenna.

Fig. 3
Fig. 3

Spatial distribution of electric fields ( E x ) in the xz plane (a) in free space at 10.7GHz, (b) through the sample with a triangular array at 10.7GHz, (c) through the sample with a square array at 9.5GHz, calculated by FDTD simulations. The Gaussian beam is normally incident on the sample plate with the electric field E along x axis ( E e ^ x ).

Fig. 4
Fig. 4

Calculated (a) and measured (b) transmittivity through the sample plate under TE polarized incidence at φ= 0 o ( E e ^ y ) from horn antenna at different incident angles θ= 0 o , 3 o , 6 o , 10 o , 15 o , 22 o , 29 o , respectively. (c) and (d) are calculated and measured transmittivity for TE polarized incidence at φ= 90 o ( E e ^ x ). Gray dash-dot lines depict the resonance states on two branches with respect to the incident angle, or equivalently speaking the in-plane wavevector.

Fig. 5
Fig. 5

Dispersion diagrams for (a) TE and (b) TM polarized SRSs for the sample with a triangular array in even mode (circular dots) and odd mode (dash lines). Measured transmittivity is plotted in colormap as a function of frequency and in-plane wavevector.

Fig. 6
Fig. 6

Dispersion diagrams for (a) TE and (b) TM polarized SRSs for the sample with a square array in even mode (circular dots) and odd mode (dash lines).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E II = p=0 q=1 ( a p,q e i β p,q z b p,q e i β p,q z ) g p,q (x,y) ,
g ρ p,q (ρ,ϕ)= N p ( T p,q d/2) J p ( T p,q ρ)cos(pϕ),
g ϕ p,q (ρ,ϕ)= p ρ N p ( T p,q d/2) J p ( T p,q ρ)sin(pϕ).
H II = p=0 q=1 ( a p,q e i β p,q z b p,q e i β p,q z ) β p,q { g ϕ p,q (ρ,ϕ) z e ^ ρ + g ρ p,q (ρ,ϕ) z e ^ ϕ +[ g ϕ p,q (ρ,ϕ) ρ g ρ p,q (ρ,ϕ) ϕ ] e ^ z },
E I = m= + n= + s=0,1 ( I s δ m,n + r m,n,s ) P m,n,s (x,y) e i( k + G m,n ) r e i k z m,n z ,
E III = m= + n= + s=0,1 t m,n,s P m,n,s (x,y) e i( k + G m,n ) r e i k z m,n z ,

Metrics