Abstract

Variable optical carrier reduction via the use of a Si3N4 ring resonator notch filter with tunable extinction ratio is demonstrated in a 10 GHz radio-over-fiber system for improving the modulation efficiency. The extinction of the filter notch is tuned with micro-heaters, by setting the Mach-Zehnder coupler of the ring. Experimental results showing a modulation depth improvement of up to 20 dB are provided.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  3. N. Gomes, M. Morant, A. Alphones, B. Cabon, J. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services [Invited],” J. Opt. Netw.8(2), 156–178 (2009).
    [CrossRef]
  4. K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994).
    [CrossRef]
  5. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
    [CrossRef]
  6. B. Hraimel, X. Zhang, Y. Pei, K. Wu, T. Liu, T. Xu, and Q. Nie, “Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems,” J. Lightwave Technol.29(5), 775–781 (2011).
    [CrossRef]
  7. M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
    [CrossRef]
  8. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
    [CrossRef]
  9. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
    [CrossRef]
  10. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
    [CrossRef]
  11. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in Proceedings of IEEE Microwave Photonics MWP2003, (Budapest, Hungary, 2003), 287–290.
  12. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol.24(5), 2207–2218 (2006).
    [CrossRef]
  13. C. Ferrari, A. Canciamilla, F. Morichetti, M. Sorel, and A. Melloni, “Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band,” Opt. Lett.36(19), 3948–3950 (2011).
    [CrossRef] [PubMed]
  14. I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).
  15. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
    [CrossRef]
  16. T. K. Woodward, A. Agarwal, T. Banwell, P. Toliver, B. J. Luff, D. Feng, P. Dong, D. C. Lee, N.-N. Feng, and M. Asghari, “Systems perspectives on optically-assisted RF signal processing using silicon photonics,” in Proceedings of IEEE Microwave Photonics MWP2011, (Singapore, Singapore, 2011), 377–380.
  17. C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
    [CrossRef]
  18. D. Guckenberger, “Microwave photonic applications for silicon photonics,” in Proceedings of Optical Fiber Communication OSA/OFC/NFOEC 2009, (Los Angeles, CA, USA, 2009), 1–3.
  19. L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
    [CrossRef]
  20. W. Green, R. Lee, G. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13(5), 1651–1659 (2005).
    [CrossRef] [PubMed]
  21. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
    [CrossRef] [PubMed]
  22. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  23. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
    [CrossRef]
  24. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12(7), 1437–1442 (2004).
    [CrossRef] [PubMed]

2011 (5)

B. Hraimel, X. Zhang, Y. Pei, K. Wu, T. Liu, T. Xu, and Q. Nie, “Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems,” J. Lightwave Technol.29(5), 775–781 (2011).
[CrossRef]

C. Ferrari, A. Canciamilla, F. Morichetti, M. Sorel, and A. Melloni, “Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band,” Opt. Lett.36(19), 3948–3950 (2011).
[CrossRef] [PubMed]

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
[CrossRef]

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

2010 (1)

2009 (2)

N. Gomes, M. Morant, A. Alphones, B. Cabon, J. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services [Invited],” J. Opt. Netw.8(2), 156–178 (2009).
[CrossRef]

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

2007 (2)

2006 (2)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol.24(5), 2207–2218 (2006).
[CrossRef]

2005 (2)

W. Green, R. Lee, G. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13(5), 1651–1659 (2005).
[CrossRef] [PubMed]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

2004 (1)

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

2000 (1)

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

1995 (1)

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

1994 (2)

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994).
[CrossRef]

Alphones, A.

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

Bakaul, M.

Bakir, B. B.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Barwicz, T.

Bernabé, S.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Cabon, B.

Canciamilla, A.

Capmany, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Charczenko, W.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

Charlet, G.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

Chow, C. W.

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

Csörnyei, M.

Derose, G.

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994).
[CrossRef]

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Fedeli, J.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Ferrari, C.

Gamage, P.

Gasulla, I.

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
[CrossRef]

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

Gomes, N.

Green, W.

Hamilton, M. C.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

Haus, H.

Hraimel, B.

Huignard, J.-P.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

Iezekiel, S.

Ippen, E.

Ippen, E. P.

Ka-Lun Lee,

Kopp, C.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

LaGasse, M. J.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

Lee, R.

Lethien, C.

Li, C.

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

Lim, C.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

Liu, T.

Lloret, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

Melloni, A.

Mitchell, J.

Morant, M.

Morichetti, F.

Nie, Q.

Nirmalathas, A.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

Novak,

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

Orobtchouk, R.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Pei, Y.

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

Poon, A. W.

Popovic, M.

Popovic, M. A.

Porte, H.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Rakich, P.

Rakich, P. T.

Sales, S.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
[CrossRef]

Sancho, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

Scherer, A.

Schrank, F.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Smith, H.

Smith, H. I.

Sorel, M.

Stöhr, A.

Tekin, T.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Thaniyavarn, S.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Tsang, H. K.

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

Waterhouse, R.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

Watts, M.

Watts, M. R.

Williams, K. J.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994).
[CrossRef]

Wu, K.

Xu, L.

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

Xu, T.

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Yariv, A.

Yizhuo Yang, D.

Zhang, X.

Zhou, L.

Zimmermann, L.

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

Electron. Lett. (3)

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011).
[CrossRef]

IEEE Photon. J. (1)

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).

IEEE Photon. Technol. Lett. (4)

L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009).
[CrossRef]

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005).
[CrossRef]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Nat. Photonics (2)

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

T. K. Woodward, A. Agarwal, T. Banwell, P. Toliver, B. J. Luff, D. Feng, P. Dong, D. C. Lee, N.-N. Feng, and M. Asghari, “Systems perspectives on optically-assisted RF signal processing using silicon photonics,” in Proceedings of IEEE Microwave Photonics MWP2011, (Singapore, Singapore, 2011), 377–380.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in Proceedings of IEEE Microwave Photonics MWP2003, (Budapest, Hungary, 2003), 287–290.

D. Guckenberger, “Microwave photonic applications for silicon photonics,” in Proceedings of Optical Fiber Communication OSA/OFC/NFOEC 2009, (Los Angeles, CA, USA, 2009), 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Scheme of the RNFTE: optical circuit (blue lines), heaters (red lines) and driving electric circuit (black lines); (b) cross section of the SiN waveguide with Ti thermo-optical actuators.

Fig. 2
Fig. 2

(a) SEM image of the fabricated RNFTE. (b) optical image of the device with micro-heaters and electrical pad structures. (c) inset (top right of (b)) showing a magnified view of the marked rectangular area in image (b).

Fig. 3
Fig. 3

Ring resonator notch filter with tunable extinction ratio (RNFTE).

Fig. 4
Fig. 4

Test bed to evaluate the suitability of the RNFTE for carrier reduction and modulation efficiency enhancement for 10 GHz RoF.

Fig. 5
Fig. 5

Optical spectra of the carrier reduced modulated 10 GHz for (a) I = 3.064 mA and CSR = 24.2 dB, (b) I = 3.614 mA and CSR = 19.13 dB, (c) I = 4.056 mA and CSR = 10.71 dB and (d) I = 4.187 mA and CSR = 4.84 dB.

Fig. 6
Fig. 6

Optical carrier-to-sideband (CSR) vs current applied to the heaters of the ring resonator.

Fig. 7
Fig. 7

Measured 10 GHz RF power vs current applied to the heaters of the ring resonator.

Fig. 8
Fig. 8

Measured magnitude transmission response for a frequency sweep 100 MHz-22 GHz.

Fig. 9
Fig. 9

Measured unwrapped phase response for a frequency sweep 100 MHz-22 GHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K r = cos 2 ( Δφ 2 ) sin 2 ( 2κ L c )

Metrics