Abstract

Oblique incidence and polarization orientation of the input beam have dramatic effects on the spectral response of coupled dielectric waveguide gratings. Coupled gratings with small periodic perturbations can be described as a problem of two coupled resonances at strictly normal incidence, but we find that the device involves four coupled resonances when oblique incidence and polarization effects are included in the analysis. Very small deviations from normal incidence change qualitatively the spectral response and four peaks are observed, whereas only two peaks are present at normal incidence. Polarization misalignments produce a decrease of the reflectance of the resonances at normal incidence, but a simultaneous shift of the spectral position of the peaks is observed at oblique incidence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965).
    [CrossRef]
  2. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990).
    [CrossRef]
  3. H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
    [CrossRef]
  4. S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
    [CrossRef]
  5. A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
    [CrossRef]
  6. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett.21(19), 1564–1566 (1996).
    [CrossRef] [PubMed]
  7. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt.38(24), 5181–5185 (1999).
    [CrossRef] [PubMed]
  8. A. Mizutani, H. Kikuta, and K. Iwata, “Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching,” J. Opt. Soc. Am. A22(2), 355–360 (2005).
    [CrossRef] [PubMed]
  9. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express17(26), 23459–23467 (2009).
    [CrossRef] [PubMed]
  10. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Evanescently coupled interface states in the gap between two Bragg reflectors,” Opt. Lett.35(12), 2085–2087 (2010).
    [CrossRef] [PubMed]
  11. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express17(26), 23544–23555 (2009).
    [CrossRef] [PubMed]
  12. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004).
    [CrossRef]
  13. A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
    [CrossRef]
  14. A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
    [CrossRef]
  15. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A11(3), 963–983 (1994).
    [CrossRef]

2010 (1)

2009 (3)

2005 (1)

2004 (2)

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004).
[CrossRef]

2003 (1)

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

2000 (1)

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

1999 (1)

1996 (1)

1994 (1)

1990 (1)

1989 (1)

H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
[CrossRef]

1965 (1)

Abram, R. A.

Andrés, M. V.

A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
[CrossRef]

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Bagby, J. S.

Bertoni, H. L.

H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
[CrossRef]

Boria, V. E.

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Boye, R. R.

Brand, S.

Cheo, L. H. S.

H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
[CrossRef]

Coves, A.

A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
[CrossRef]

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Engel, H.

Fainman, Y.

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004).
[CrossRef]

Friesem, A. A.

Garrido, P. P.

A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
[CrossRef]

Gil, J.

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

Gimeno, B.

A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
[CrossRef]

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Hessel, A.

Holzheimer, T. R.

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

Huang, W. P.

Iwata, K.

Kaliteevski, M. A.

Kikuta, H.

Kim, S.

Kostuk, R. K.

Magnusson, R.

Maldonado, T. A.

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

Mizutani, A.

Moharam, M. G.

Nakagawa, W.

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004).
[CrossRef]

Ngo, Q. M.

Oliner, A. A.

Rosenblatt, D.

San Blas, A. A.

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Sharon, A.

Song, H. Y.

Song, S. H.

Steingrueber, R.

Tamir, T.

H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
[CrossRef]

Tibuleac, S.

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

Vidal, A.

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

Wang, S. S.

Weber, H. G.

Young, P. P.

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

Ziolkowski, R. W.

Appl. Opt. (2)

IEEE Antennas Wirel. Propag. Lett. (1)

A. Coves, B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andrés, “Three-dimensional scattering of dielectric gratings under plane-wave excitation,” IEEE Antennas Wirel. Propag. Lett.2(1), 215–218 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

A. Coves, B. Gimeno, J. Gil, M. V. Andrés, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antenn. Propag.52(8), 2091–2099 (2004).
[CrossRef]

H. L. Bertoni, L. H. S. Cheo, and T. Tamir, “Frequency-selective reflection and transmission by a periodic dielectric layer,” IEEE Trans. Antenn. Propag.37(1), 78–83 (1989).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Tibuleac, R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. Microw. Theory Tech.48(4), 553–561 (2000).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (2)

Opt. Lett. (2)

Prog. Electron. Res. (1)

A. Coves, P. P. Garrido, B. Gimeno, and M. V. Andrés, “Filter response of resonant waveguide dielectric gratings at plane-wave conical incidence,” Prog. Electron. Res.95, 219–239 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Basic structure, consisting of two back-to-back substrates with overlaid DWGs, separated by a small air gap: normal incidence (a) and 3-D incidence (b). The outer substrate surfaces are effectively extended to infinity.

Fig. 2
Fig. 2

(a) Reflectance as a function of wavelength of two coupled DWGs for different air-gap widths depicted in the figure, at normal plane-wave TE incidence. (b) Separation of the line-pairs as a function of the air-gap width w: comparison between the vector modal method (solid line) and the approximated solution obtained by the coupled mode theory (crosses).

Fig. 3
Fig. 3

(a) Equivalent two coupled shallow SRGs. (b) Comparison of the reflectance of two coupled DWGs with an air-gap w = 0.5 μm (solid line) with the reflectance of two coupled shallow SRGs (dotted line).

Fig. 4
Fig. 4

(a) Reflectance spectra of a single SRG at oblique incidence for several angles of incidence θ. (b) Resonant wavelengths versus the angle of incidence θ .

Fig. 5
Fig. 5

(a) Reflectance spectra of a pair of coupled SRGs with w = 0.5 μm at normal incidence (solid line) and at oblique incidence, θ = 0.2° (dashed line). (b) Wavelength of the four resonances versus the angle of incidence with w = 0.5 μm. (c) Zoom of the crossing point of two of the resonances represented in Fig. 5(b). (d) Variation of the resonance wavelength versus the separation w at an angle of incidence of θ = 1°.

Fig. 6
Fig. 6

(a) Reflectance spectra of the pair of coupled SRGs of Fig. 5(a) at normal incidence for different angles ϕ. (b) Detail of one of the resonances.

Fig. 7
Fig. 7

(a) Reflectance spectra of the pair of coupled SRGs of Fig. 5(a) at oblique incidence (θ = 0.2°) for different angles ϕ. (b) Detail of the central resonances.

Metrics